These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 22500897)
1. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification. Cianchetta S; Galletti S; Burzi PL; Cerato C Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897 [TBL] [Abstract][Full Text] [Related]
2. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends. Cianchetta S; Bregoli L; Galletti S Appl Biochem Biotechnol; 2017 Nov; 183(3):876-892. PubMed ID: 28386674 [TBL] [Abstract][Full Text] [Related]
3. A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Cianchetta S; Galletti S; Burzi PL; Cerato C Biotechnol Bioeng; 2010 Oct; 107(3):461-8. PubMed ID: 20517987 [TBL] [Abstract][Full Text] [Related]
4. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Pribowo A; Arantes V; Saddler JN Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175 [TBL] [Abstract][Full Text] [Related]
5. Sensitive high-throughput screening for the detection of reducing sugars. Mellitzer A; Glieder A; Weis R; Reisinger C; Flicker K Biotechnol J; 2012 Jan; 7(1):155-62. PubMed ID: 21538898 [TBL] [Abstract][Full Text] [Related]
6. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885 [TBL] [Abstract][Full Text] [Related]
7. Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels. Sundar S; Bergey NS; Salamanca-Cardona L; Stipanovic A; Driscoll M Carbohydr Polym; 2014 Jan; 100():195-201. PubMed ID: 24188854 [TBL] [Abstract][Full Text] [Related]
8. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Zhao H; Baker GA; Cowins JV Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Várnai A; Viikari L; Marjamaa K; Siika-aho M Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135 [TBL] [Abstract][Full Text] [Related]
10. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. Dowe N Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626 [TBL] [Abstract][Full Text] [Related]
11. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Rollin JA; Zhu Z; Sathitsuksanoh N; Zhang YH Biotechnol Bioeng; 2011 Jan; 108(1):22-30. PubMed ID: 20812260 [TBL] [Abstract][Full Text] [Related]
12. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Sun FF; Hong J; Hu J; Saddler JN; Fang X; Zhang Z; Shen S Enzyme Microb Technol; 2015 Nov; 79-80():42-8. PubMed ID: 26320713 [TBL] [Abstract][Full Text] [Related]
13. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Wu H; Mora-Pale M; Miao J; Doherty TV; Linhardt RJ; Dordick JS Biotechnol Bioeng; 2011 Dec; 108(12):2865-75. PubMed ID: 21769858 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus. Quiroz-Castañeda RE; Pérez-Mejía N; Martínez-Anaya C; Acosta-Urdapilleta L; Folch-Mallol J Biodegradation; 2011 Jun; 22(3):565-72. PubMed ID: 20963471 [TBL] [Abstract][Full Text] [Related]
15. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase. Delabona Pda S; Cota J; Hoffmam ZB; Paixão DA; Farinas CS; Cairo JP; Lima DJ; Squina FM; Ruller R; Pradella JG Bioresour Technol; 2013 Mar; 131():500-7. PubMed ID: 23391738 [TBL] [Abstract][Full Text] [Related]
16. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Zhang J; Tuomainen P; Siika-Aho M; Viikari L Bioresour Technol; 2011 Oct; 102(19):9090-5. PubMed ID: 21767947 [TBL] [Abstract][Full Text] [Related]