These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22501052)

  • 1. ̀Spatial impulse response of a rectangular double curved transducer.
    Bæk DB; Jensen JA; Willatzen M
    J Acoust Soc Am; 2012 Apr; 131(4):2730-41. PubMed ID: 22501052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of impulse response of rectangular ultrasound transducer].
    Bu F; Cao P; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):425-8. PubMed ID: 11211831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II.
    Bæk D; Jensen JA; Willatzen M
    J Acoust Soc Am; 2010 May; 127(5):2825-35. PubMed ID: 21117733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new algorithm for spatial impulse response of rectangular planar transducers.
    Cheng J; Lu JY; Lin W; Qin YX
    Ultrasonics; 2011 Feb; 51(2):229-37. PubMed ID: 20863543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic field modeling: a comparison of analytical, semi-analytical, and numerical techniques.
    Kundu T; Placko D; Rahani EK; Yanagita T; Dao CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2795-807. PubMed ID: 21156375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.
    Zou C; Sun Z; Cai D; Muhammad S; Zhang W; Chen Q
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved approximation for the spatial impulse response of a rectangular transducer.
    Teo TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):76-83. PubMed ID: 18244160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound characteristics of focused axisymmetrically curved surface transducers.
    Wang HZ; He Y; Yang YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):63-72. PubMed ID: 18284951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial impulse response method for predicting pulse-echo fields from a linear array with cylindrically concave surface.
    Wu P; Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1283-97. PubMed ID: 18244321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-analytical computation of the acoustic field of a segment of a cylindrically concave transducer in lossless and attenuating media.
    Karbeyaz BU; Miller EL; Cleveland RO
    J Acoust Soc Am; 2007 Feb; 121(2):1226-37. PubMed ID: 17348544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computationally efficient sound field calculations for a circular array transducer.
    Lee C; Benkeser PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):43-7. PubMed ID: 18263117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new algorithm to calculate the transient near-field of ultrasonic phased arrays.
    Ullate LG; San Emeterio JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):745-53. PubMed ID: 18267691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast computation of the acoustic field for ultrasound elements.
    Güven HE; Miller E; Cleveland RO
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1903-12. PubMed ID: 19811993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach.
    Du Y; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):588-94. PubMed ID: 23141667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new analytic expression for fast calculation of the transient near and far field of a rectangular baffled piston.
    Ortega A; Tong L; D'hooge J
    Ultrasonics; 2014 Apr; 54(4):1071-7. PubMed ID: 24447860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diffraction response interpolation method.
    Jespersen SK; Pedersen PC; Wilhjelm JE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1461-75. PubMed ID: 18249994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of electromagnetic acoustic transducers using distributed point source method.
    Eskandarzade M; Kundu T; Liebeaux N; Placko D; Mobadersani F
    Ultrasonics; 2010 May; 50(6):583-91. PubMed ID: 20071000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based correction of diffraction effects of the virtual source element.
    Wennerström E; Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1614-22. PubMed ID: 17703665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.