These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22501087)

  • 1. Characterization of woodwind instrument toneholes with the finite element method.
    Lefebvre A; Scavone GP
    J Acoust Soc Am; 2012 Apr; 131(4):3153-63. PubMed ID: 22501087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of open woodwind toneholes by the tube reversed method.
    Garcia Mayén H; Kergomard J; Vergez C; Guillemain P; Jousserand M; Pachebat M; Sanchez P
    J Acoust Soc Am; 2021 Nov; 150(5):3763. PubMed ID: 34852613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model of the tuning slot of labial organ pipes.
    Rucz P; Augusztinovicz F; Angster J; Preukschat T; Miklós A
    J Acoust Soc Am; 2015 Mar; 137(3):1226-37. PubMed ID: 25786936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear-acoustic effects of asymmetrical undercutting of toneholes of woodwind instruments.
    Gerasimov R
    J Acoust Soc Am; 2024 Oct; 156(4):2644-2655. PubMed ID: 39417656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bassoon tonehole lattice: Links between the open and closed holes and the radiated sound spectrum.
    Petersen EA; Colinot T; Silva F; H-Turcotte V
    J Acoust Soc Am; 2021 Jul; 150(1):398. PubMed ID: 34340486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the cutoff frequency on the sound production of a clarinet-like instrument.
    Petersen E; Guillemain P; Kergomard J; Colinot T
    J Acoust Soc Am; 2019 Jun; 145(6):3784. PubMed ID: 31255117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chimney tube in musical acoustics: A textbook-level formulation for students and musicians.
    Saenger KL
    J Acoust Soc Am; 2022 Jul; 152(1):540. PubMed ID: 35931525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete-time modeling of woodwind instrument bores using wave variables.
    van Walstijn M; Campbell M
    J Acoust Soc Am; 2003 Jan; 113(1):575-85. PubMed ID: 12558293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood for sound.
    Wegst UG
    Am J Bot; 2006 Oct; 93(10):1439-48. PubMed ID: 21642091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of finite element analysis in dental ceramics research.
    Lang LA; Wang RF; Kang B; White SN
    J Prosthet Dent; 2001 Dec; 86(6):650-4. PubMed ID: 11753319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical investigation on aerosols emission in musical practice and efficiency of reduction means.
    Viala R; Creton M; Jousserand M; Soubrié T; Néchab J; Crenn V; Léglise J
    J Aerosol Sci; 2022 Nov; 166():106051. PubMed ID: 36061037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis.
    Petrie CS; Williams JL
    Clin Oral Implants Res; 2005 Aug; 16(4):486-94. PubMed ID: 16117775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter study on a finite element model of the middle ear.
    Hoffstetter M; Schardt F; Lenarz T; Wacker S; Wintermantel E
    Biomed Tech (Berl); 2010 Feb; 55(1):19-26. PubMed ID: 20128742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A; Mukherjee S; Karthikeyan B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transfer matrix for the input impedance of weakly tapered, dissipative cones as of wind instruments (L).
    Grothe T; Baumgart J; Nederveen CJ
    J Acoust Soc Am; 2023 Jul; 154(1):463-466. PubMed ID: 37489912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis.
    Zhang EW; Cheung GS; Zheng YF
    J Endod; 2010 Aug; 36(8):1394-8. PubMed ID: 20647104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the consistency of woodwind instrument manufacturing by comparing five nominally identical oboes.
    Mamou-Mani A; Brian Sharp D; Meurisse T; Ring W
    J Acoust Soc Am; 2012 Jan; 131(1):728-36. PubMed ID: 22280695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pressure-based transfer matrix method and measurement technique for studying resonances in flutes and other open-input resonators.
    Saenger KL
    J Acoust Soc Am; 2020 Apr; 147(4):2556. PubMed ID: 32359327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Woodwind instrument design optimization based on impedance characteristics with geometric constraints.
    Ernoult A; Vergez C; Missoum S; Guillemain P; Jousserand M
    J Acoust Soc Am; 2020 Nov; 148(5):2864. PubMed ID: 33261417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.