These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 225015)

  • 61. Unscheduled DNA synthesis, u.v.-induced chromosome aberrations and SV 40 transformation in cultured cells from xeroderma pigmentosum.
    Parrington JM; Delhanty JD; Baden HP
    Ann Hum Genet; 1971 Oct; 35(2):149-60. PubMed ID: 4334062
    [No Abstract]   [Full Text] [Related]  

  • 62. Ultraviolet hypermutability of a shuttle vector propagated in xeroderma pigmentosum variant cells.
    Waters HL; Seetharam S; Seidman MM; Kraemer KH
    J Invest Dermatol; 1993 Nov; 101(5):744-8. PubMed ID: 8228338
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Increased UV resistance in xeroderma pigmentosum group A cells after transformation with a human genomic DNA clone.
    Rinaldy A; Bellew T; Egli E; Lloyd RS
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6818-22. PubMed ID: 2168562
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Establishment by SV40 transformation and characteristics of a cell line of xeroderma pigmentosum belonging to complementation group F.
    Yagi T; Takebe H
    Mutat Res; 1983 Feb; 112(1):59-66. PubMed ID: 6298614
    [No Abstract]   [Full Text] [Related]  

  • 65. Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light.
    Meneghini R; Cordeiro-Stone M; Schumacher RI
    Biophys J; 1981 Jan; 33(1):81-92. PubMed ID: 6268212
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light.
    Cleaver JE; Thomas GH; Park SD
    Biochim Biophys Acta; 1979 Aug; 564(1):122-31. PubMed ID: 534635
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biological and biochemical characterization of an SV40-transformed xeroderma pigmentosum cell line.
    Royer-Pokora B; Peterson WD; Haseltine WA
    Exp Cell Res; 1984 Apr; 151(2):408-20. PubMed ID: 6323201
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Isolation of UV-resistant revertants from a xeroderma pigmentosum complementation group A cell line.
    Royer-Pokora B; Haseltine WA
    Nature; 1984 Sep 27-Oct 3; 311(5984):390-2. PubMed ID: 6090936
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Decreased host cell reactivation of irradiated SV40 virus in xeroderma pigmentosum.
    Aaronson SA; Lytle CD
    Nature; 1970 Oct; 228(5269):359-61. PubMed ID: 4319741
    [No Abstract]   [Full Text] [Related]  

  • 70. DNA strand breaking and rejoining in response to ultraviolet light in normal human and xeroderma pigmentosum cells.
    Dingman CW; Kakunaga T
    Int J Radiat Biol Relat Stud Phys Chem Med; 1976 Jul; 30(1):55-66. PubMed ID: 1086294
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Resistance of plateau-phase human normal and xeroderma pigmentosum fibroblasts to the cytotoxic effect of ultraviolet light.
    Chan GL; Little JB
    Mutat Res; 1979 Dec; 63(2):401-12. PubMed ID: 522880
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced induction of SV40 replication from transformed rat cells by fusion with UV-irradiated normal and repair-deficient human fibroblasts.
    van der Lubbe JL; Abrahams PJ; van Drunen CM; van der Eb AJ
    Mutat Res; 1986 Mar; 165(2):47-56. PubMed ID: 3005852
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Immortalization of xeroderma pigmentosum cells by simian virus 40 DNA having a defective origin of DNA replication.
    Canaani D; Naiman T; Teitz T; Berg P
    Somat Cell Mol Genet; 1986 Jan; 12(1):13-20. PubMed ID: 3003928
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Repair of DNA in xeroderma pigmentosum conjunctiva.
    Newsome DA; Kraemer KH; Robbins JH
    Arch Ophthalmol; 1975 Aug; 93(8):660-2. PubMed ID: 1164219
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells.
    Karentz D; Cleaver JE
    Mol Cell Biol; 1986 Oct; 6(10):3428-32. PubMed ID: 3796587
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elevation of dCTP pools in xeroderma pigmentosum variant human fibroblasts alters the effects of DNA repair arrest by arabinofuranosyl cytosine.
    Dunn WC; Regan JD; Snyder RD
    Cell Biol Toxicol; 1985 Jan; 1(2):75-86. PubMed ID: 3917128
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Restoration of ultraviolet-induced unsceduled DNA synthesis of xeroderma pigmentosum cells by insertion of T4 endonuclease V utilizing HVJ (AUTHOR'S TRANSL)].
    Tanaka K; Okada Y; Sekiguchi M
    Tanpakushitsu Kakusan Koso; 1976; 21(7):525-35. PubMed ID: 184492
    [No Abstract]   [Full Text] [Related]  

  • 78. Studies on gene transfer and reversion to UV resistance in xeroderma pigmentosum cells.
    Schultz RA; Barbis DP; Friedberg EC
    Somat Cell Mol Genet; 1985 Nov; 11(6):617-24. PubMed ID: 3000003
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA repair in tumor cells from the variant form of xeroderma pigmentosum.
    Robbins JH; Kraemer KH; Flaxman BA
    J Invest Dermatol; 1975 Mar; 64(3):150-5. PubMed ID: 1117174
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A simple and rapid method for evaluating the survival of xeroderma pigmentosum lymphoid lines after irradiation with ultraviolet light.
    Moshell AN; Tarone RE; Newfield SA; Andrews AD; Robbins JH
    In Vitro; 1981 Apr; 17(4):299-307. PubMed ID: 6263790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.