BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22502565)

  • 1. Cardiac-phase filtering in intracardiac particle image velocimetry.
    Jamison RA; Fouras A; Bryson-Richardson RJ
    J Biomed Opt; 2012 Mar; 17(3):036007. PubMed ID: 22502565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo wall shear measurements within the developing zebrafish heart.
    Jamison RA; Samarage CR; Bryson-Richardson RJ; Fouras A
    PLoS One; 2013; 8(10):e75722. PubMed ID: 24124507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development.
    Wang Z; Ding Y; Satta S; Roustaei M; Fei P; Hsiai TK
    PLoS Comput Biol; 2021 Jul; 17(7):e1009175. PubMed ID: 34228702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves.
    Kini V; Bachmann C; Fontaine A; Deutsch S; Tarbell JM
    Artif Organs; 2001 Feb; 25(2):136-45. PubMed ID: 11251479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry.
    Stovall S; Midgett M; Thornburg K; Rugonyi S
    J Biomed Opt; 2016 Nov; 21(11):116003. PubMed ID: 27812694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D modelling of fluid mechanics in the zebrafish embryonic heart.
    Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH
    Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
    Vedula V; Lee J; Xu H; Kuo CJ; Hsiai TK; Marsden AL
    PLoS Comput Biol; 2017 Oct; 13(10):e1005828. PubMed ID: 29084212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of image spatial, temporal, and velocity resolutions on cardiovascular indices derived from color-Doppler echocardiography.
    Rojo-Alvarez JL; Bermejo J; Rodríguez-González AB; Martínez-Fernández A; Yotti R; García-Fernández MA; Carlos Antoranz J
    Med Image Anal; 2007 Dec; 11(6):513-25. PubMed ID: 17573232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heart function and hemodynamic analysis for zebrafish embryos.
    Yalcin HC; Amindari A; Butcher JT; Althani A; Yacoub M
    Dev Dyn; 2017 Nov; 246(11):868-880. PubMed ID: 28249360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation.
    Rugonyi S; Shaut C; Liu A; Thornburg K; Wang RK
    Phys Med Biol; 2008 Sep; 53(18):5077-91. PubMed ID: 18723935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time optical gating for three-dimensional beating heart imaging.
    Taylor JM; Saunter CD; Love GD; Girkin JM; Henderson DJ; Chaudhry B
    J Biomed Opt; 2011 Nov; 16(11):116021. PubMed ID: 22112126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac outflow and wall motion in hypothermic chick embryos.
    Lee SJ; Yeom E; Ha H; Nam KH
    Microvasc Res; 2011 Nov; 82(3):296-303. PubMed ID: 21971263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of blood and myocardial velocity in the rat heart by phase contrast MRI using sparse q-space sampling.
    Wise RG; Al-Shafei AI; Carpenter TA; Hall LD; Huang CL
    J Magn Reson Imaging; 2005 Nov; 22(5):614-27. PubMed ID: 16193471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating myocardial motion by MRI using tissue phase mapping.
    Jung B; Markl M; Föll D; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S150-7. PubMed ID: 16563784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae.
    Malone MH; Sciaky N; Stalheim L; Hahn KM; Linney E; Johnson GL
    BMC Biotechnol; 2007 Jul; 7():40. PubMed ID: 17623073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart.
    Poelma C; Van der Heiden K; Hierck BP; Poelmann RE; Westerweel J
    J R Soc Interface; 2010 Jan; 7(42):91-103. PubMed ID: 19401309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques.
    Browne P; Ramuzat A; Saxena R; Yoganathan AP
    Ann Biomed Eng; 2000 Jan; 28(1):39-47. PubMed ID: 10645786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved method for quantification of regional cardiac function in mice using phase-contrast MRI.
    Dall'Armellina E; Jung BA; Lygate CA; Neubauer S; Markl M; Schneider JE
    Magn Reson Med; 2012 Feb; 67(2):541-51. PubMed ID: 21674616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.