These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22502577)

  • 1. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.
    Sun Y; Papin C; Azorin-Peris V; Kalawsky R; Greenwald S; Hu S
    J Biomed Opt; 2012 Mar; 17(3):037005. PubMed ID: 22502577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncontact imaging photoplethysmography to effectively access pulse rate variability.
    Sun Y; Hu S; Azorin-Peris V; Kalawsky R; Greenwald S
    J Biomed Opt; 2013 Jun; 18(6):061205. PubMed ID: 23111602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusing Partial Camera Signals for Noncontact Pulse Rate Variability Measurement.
    McDuff DJ; Blackford EB; Estepp JR
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1725-1739. PubMed ID: 29989930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvements in remote cardiopulmonary measurement using a five band digital camera.
    McDuff D; Gontarek S; Picard RW
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2593-601. PubMed ID: 24835124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry.
    Humphreys K; Ward T; Markham C
    Rev Sci Instrum; 2007 Apr; 78(4):044304. PubMed ID: 17477684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a Pulse Rate Variability Measurement Using a Smartphone Camera.
    Bánhalmi A; Borbás J; Fidrich M; Bilicki V; Gingl Z; Rudas L
    J Healthc Eng; 2018; 2018():4038034. PubMed ID: 29666670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise.
    Sun Y; Hu S; Azorin-Peris V; Greenwald S; Chambers J; Zhu Y
    J Biomed Opt; 2011 Jul; 16(7):077010. PubMed ID: 21806290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI).
    Amelard R; Scharfenberger C; Kazemzadeh F; Pfisterer KJ; Lin BS; Clausi DA; Wong A
    Sci Rep; 2015 Oct; 5():14637. PubMed ID: 26440644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
    Hu S; Azorin-Peris V; Zheng J
    J Healthc Eng; 2013; 4(4):505-28. PubMed ID: 24287429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method based on two cameras for accurate estimation of arterial oxygen saturation.
    Liu H; Ivanov K; Wang Y; Wang L
    Biomed Eng Online; 2015 May; 14():52. PubMed ID: 26025439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waveform Analysis for Camera-based Photoplethysmography Imaging.
    Paul M; Yu X; Wu B; Weiss C; Antink CH; Blazek V; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2713-2718. PubMed ID: 31946455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis.
    Yan Y; Ma X; Yao L; Ouyang J
    Biomed Mater Eng; 2015; 26 Suppl 1():S903-9. PubMed ID: 26406091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoplethysmography imaging:camera performance evaluation by means of an optoelectronic skin perfusion phantom.
    Borik S; Lyra S; Paul M; Antink CH; Leonhardt S; Blazek V
    Physiol Meas; 2020 Jun; 41(5):054001. PubMed ID: 32268307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging.
    Sun Y; Thakor N
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):463-77. PubMed ID: 26390439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote detection of mental workload changes using cardiac parameters assessed with a low-cost webcam.
    Bousefsaf F; Maaoui C; Pruski A
    Comput Biol Med; 2014 Oct; 53():154-63. PubMed ID: 25150821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.