BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2250262)

  • 1. Slip-shod or safely shod: the bighorn sheep as a natural model for research.
    Manning DP; Cooper JE; Jones C; Bruce M
    J R Soc Med; 1990 Nov; 83(11):686-9. PubMed ID: 2250262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane.
    Manning DP; Jones C
    Appl Ergon; 2001 Apr; 32(2):185-96. PubMed ID: 11277511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slip resistant properties of footwear on ice.
    Gao C; Abeysekera J; Hirvonen M; Grönqvist R
    Ergonomics; 2004 May; 47(6):710-6. PubMed ID: 15204296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the footpads of the polar bear (Ursus maritimus) and their possible relevance to accident prevention.
    Manning DP; Cooper JE; Stirling I; Jones CM; Bruce M; McCausland PC
    J Hand Surg Br; 1985 Oct; 10(3):303-7. PubMed ID: 4078456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slip resistance of casual footwear: implications for falls in older adults.
    Menz HB; Lord ST; McIntosh AS
    Gerontology; 2001; 47(3):145-9. PubMed ID: 11340320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting and eliminating slippery footwear.
    Jones C; Manning DP; Bruce M
    Ergonomics; 1995 Feb; 38(2):242-249. PubMed ID: 28084944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of footwear sole hardness on slip characteristics and slip-induced falls in young adults.
    Tsai YJ; Powers CM
    J Forensic Sci; 2013 Jan; 58(1):46-50. PubMed ID: 23062013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.
    Li KW; Wu HH; Lin YC
    Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of footwear sole hardness on slip initiation in young adults.
    Tsai YJ; Powers CM
    J Forensic Sci; 2008 Jul; 53(4):884-8. PubMed ID: 18482376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hoof characteristics on the propensity of cattle to slip.
    Phillips CJ; Coe R; Colgan M; Duffus C; Ingoldby L; Pond M; Postlethwaite S
    Vet Rec; 1998 Mar; 142(10):242-5. PubMed ID: 9549866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike.
    Grönqvist R; Hirvonen M; Rajamäki E; Matz S
    Accid Anal Prev; 2003 Mar; 35(2):211-25. PubMed ID: 12504142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical characterization of hoof growth pattern in six Iranian sheep breeds and its possible implication for trimming recommendations.
    Azarpajouh S; Marchewka J; Segura Correa JC; Calderón Díaz JA
    Trop Anim Health Prod; 2018 Aug; 50(6):1343-1348. PubMed ID: 29527630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of different floorings on the hooves of sheep. 2. The hoof mass of sheep as a basis for the determination of floor grating size].
    Rieger E; Schröder G; Schmoldt P
    Arch Exp Veterinarmed; 1984 Sep; 38(5):765-70. PubMed ID: 6529334
    [No Abstract]   [Full Text] [Related]  

  • 15. Slip safety risk analysis of surface properties using the coefficients of friction of rocks.
    Çoşkun G; Sarıışık G; Sarıışık A
    Int J Occup Saf Ergon; 2019 Sep; 25(3):443-457. PubMed ID: 29083960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Friction between footwear and floor covered with solid particles under dry and wet conditions.
    Li KW; Meng F; Zhang W
    Int J Occup Saf Ergon; 2014; 20(1):43-53. PubMed ID: 24629869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors.
    Grönqvist R
    Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferred surface microscopic geometric features on floors as potential interventions for slip and fall accidents on liquid contaminated surfaces.
    Chang WR
    J Safety Res; 2004; 35(1):71-9. PubMed ID: 14992848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces.
    Yamaguchi T; Hsu J; Li Y; Maki BE
    Appl Ergon; 2015 Nov; 51():9-17. PubMed ID: 26154199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.
    Tsai YJ; Powers CM
    Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.