These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22503400)

  • 41. Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: a combined atomic force microscopy and nanomechanical study.
    Dols-Perez A; Fumagalli L; Simonsen AC; Gomila G
    Langmuir; 2011 Nov; 27(21):13165-72. PubMed ID: 21936555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis.
    Norouzi D; Müller MM; Deserno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061914. PubMed ID: 17280103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase transitions in supported lipid bilayers studied by AFM.
    Alessandrini A; Facci P
    Soft Matter; 2014 Oct; 10(37):7145-64. PubMed ID: 25090108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Penetration of cell membranes and synthetic lipid bilayers by nanoprobes.
    Angle MR; Wang A; Thomas A; Schaefer AT; Melosh NA
    Biophys J; 2014 Nov; 107(9):2091-100. PubMed ID: 25418094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy.
    Choi EJ; Dimitriadis EK
    Biophys J; 2004 Nov; 87(5):3234-41. PubMed ID: 15347587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AFM-based force-clamp monitors lipid bilayer failure kinetics.
    Redondo-Morata L; Giannotti MI; Sanz F
    Langmuir; 2012 Apr; 28(15):6403-10. PubMed ID: 22443887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emerging Roles of Air Gases in Lipid Bilayers.
    Lee CW; Chiang YL; Liu JT; Chen YX; Lee CH; Chen YL; Hwang IS
    Small; 2018 Oct; 14(40):e1802133. PubMed ID: 30168661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic force microscopy of lipid domains in supported model membranes.
    Burns AR
    Methods Mol Biol; 2007; 398():263-82. PubMed ID: 18214386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.
    Šegota S; Vojta D; Pletikapić G; Baranović G
    Chem Phys Lipids; 2015 Feb; 186():17-29. PubMed ID: 25447291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The potential of AFM in studying the role of the nanoscale amphipathic nature of (lipo)-peptides interacting with lipid bilayers.
    Mescola A; Ragazzini G; Facci P; Alessandrini A
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35830770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of lipid membrane structural and mechanical properties by a peptidomimetic derived from reduced amide scaffold.
    Khadka NK; Teng P; Cai J; Pan J
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):734-744. PubMed ID: 28132901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of solid-supported lipid bilayers: an integrated view.
    Richter RP; Bérat R; Brisson AR
    Langmuir; 2006 Apr; 22(8):3497-505. PubMed ID: 16584220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM.
    Andre G; Brasseur R; Dufrêne YF
    J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers.
    Sheikh KH; Giordani C; Kilpatrick JI; Jarvis SP
    Langmuir; 2011 Apr; 27(7):3749-53. PubMed ID: 21370902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation.
    Redondo-Morata L; Oncins G; Sanz F
    Biophys J; 2012 Jan; 102(1):66-74. PubMed ID: 22225799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of Glycans on Lipid Membrane Dynamics at the Nanoscale Unveiled by Planar Plasmonic Nanogap Antennas and Atomic Force Spectroscopy.
    Winkler PM; Campelo F; Giannotti MI; Garcia-Parajo MF
    J Phys Chem Lett; 2021 Feb; 12(4):1175-1181. PubMed ID: 33480693
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amyloid-forming proteins alter the local mechanical properties of lipid membranes.
    Burke KA; Yates EA; Legleiter J
    Biochemistry; 2013 Feb; 52(5):808-17. PubMed ID: 23331195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.