BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 22503631)

  • 1. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.
    Guo HF; Li ZS; Dong SW; Chen WJ; Deng L; Wang YF; Ying DJ
    Colloids Surf B Biointerfaces; 2012 Aug; 96():29-36. PubMed ID: 22503631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.
    Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL
    Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in PVDF fibers due to electrospinning and its effect on biological function.
    Damaraju SM; Wu S; Jaffe M; Arinzeh TL
    Biomed Mater; 2013 Aug; 8(4):045007. PubMed ID: 23770816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α- and β-poly(vinylidene fluoride) evoke different cellular behaviours.
    Low YK; Meenubharathi N; Niphadkar ND; Boey FY; Ng KW
    J Biomater Sci Polym Ed; 2011; 22(12):1651-67. PubMed ID: 20699059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application.
    Lee JC; Suh IW; Park CH; Kim CS
    J Tissue Eng Regen Med; 2021 Oct; 15(10):869-877. PubMed ID: 34339581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell-material interface compared to α-phase poly(vinylidene fluoride) films.
    Low YK; Zou X; Fang YM; Wang JL; Lin WS; Boey FY; Ng KW
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():345-53. PubMed ID: 24268268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds.
    Al Halabi F; Gryshkov O; Kuhn AI; Kapralova VM; Glasmacher B
    Int J Artif Organs; 2018 Nov; 41(11):811-822. PubMed ID: 29976127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun scaffolds of a polyhydroxyalkanoate consisting of omega-hydroxylpentadecanoate repeat units: fabrication and in vitro biocompatibility studies.
    Focarete ML; Gualandi C; Scandola M; Govoni M; Giordano E; Foroni L; Valente S; Pasquinelli G; Gao W; Gross RA
    J Biomater Sci Polym Ed; 2010; 21(10):1283-96. PubMed ID: 20534185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.
    He T; Wang J; Huang P; Zeng B; Li H; Cao Q; Zhang S; Luo Z; Deng DY; Zhang H; Zhou W
    Colloids Surf B Biointerfaces; 2015 Jun; 130():278-86. PubMed ID: 25936562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun gelatin/polyurethane blended nanofibers for wound healing.
    Kim SE; Heo DN; Lee JB; Kim JR; Park SH; Jeon SH; Kwon IK
    Biomed Mater; 2009 Aug; 4(4):044106. PubMed ID: 19671952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc oxide-doped poly(urethane) spider web nanofibrous scaffold via one-step electrospinning: a novel matrix for tissue engineering.
    Amna T; Hassan MS; Sheikh FA; Lee HK; Seo KS; Yoon D; Hwang IH
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1725-34. PubMed ID: 22918299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel silk fibroin/elastin wound dressings.
    Vasconcelos A; Gomes AC; Cavaco-Paulo A
    Acta Biomater; 2012 Aug; 8(8):3049-60. PubMed ID: 22546517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of 3D hybrid collagen matrixes as a dermal substitute in skin tissue engineering.
    Ramanathan G; Singaravelu S; Muthukumar T; Thyagarajan S; Perumal PT; Sivagnanam UT
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():359-370. PubMed ID: 28024598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts.
    Kitsara M; Blanquer A; Murillo G; Humblot V; De Bragança Vieira S; Nogués C; Ibáñez E; Esteve J; Barrios L
    Nanoscale; 2019 May; 11(18):8906-8917. PubMed ID: 31016299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotemplated syntheses of macroporous materials for bone tissue engineering scaffolds and experiments in vitro and vivo.
    Li X; Zhao Y; Bing Y; Li Y; Gan N; Guo Z; Peng Z; Zhu Y
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5557-62. PubMed ID: 23742223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration.
    Tchemtchoua VT; Atanasova G; Aqil A; Filée P; Garbacki N; Vanhooteghem O; Deroanne C; Noël A; Jérome C; Nusgens B; Poumay Y; Colige A
    Biomacromolecules; 2011 Sep; 12(9):3194-204. PubMed ID: 21761871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes.
    Liu X; Lin T; Fang J; Yao G; Zhao H; Dodson M; Wang X
    J Biomed Mater Res A; 2010 Aug; 94(2):499-508. PubMed ID: 20186775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.