These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 22503831)
1. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Ruban AV; Murchie EH Biochim Biophys Acta; 2012 Jul; 1817(7):977-82. PubMed ID: 22503831 [TBL] [Abstract][Full Text] [Related]
2. Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. Giovagnetti V; Ruban AV J Photochem Photobiol B; 2015 Nov; 152(Pt B):272-8. PubMed ID: 26409576 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Ware MA; Belgio E; Ruban AV J Exp Bot; 2015 Mar; 66(5):1259-70. PubMed ID: 25429003 [TBL] [Abstract][Full Text] [Related]
4. Allocation of Absorbed Light Energy in Photosystem II in NPQ Mutants of Arabidopsis. Ikeuchi M; Sato F; Endo T Plant Cell Physiol; 2016 Jul; 57(7):1484-1494. PubMed ID: 27076397 [TBL] [Abstract][Full Text] [Related]
5. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. Yarkhunova Y; Guadagno CR; Rubin MJ; Davis SJ; Ewers BE; Weinig C Plant Cell Environ; 2018 Nov; 41(11):2518-2529. PubMed ID: 29664141 [TBL] [Abstract][Full Text] [Related]
6. Dynamic interplay between photodamage and photoprotection in photosystem II. Townsend AJ; Ware MA; Ruban AV Plant Cell Environ; 2018 May; 41(5):1098-1112. PubMed ID: 29210070 [TBL] [Abstract][Full Text] [Related]
7. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
8. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses. Ruban AV; Belgio E Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130222. PubMed ID: 24591709 [TBL] [Abstract][Full Text] [Related]
9. Photoprotective mechanism of the non-target organism Arabidopsis thaliana to paraquat exposure. Moustaka J; Moustakas M Pestic Biochem Physiol; 2014 May; 111():1-6. PubMed ID: 24861926 [TBL] [Abstract][Full Text] [Related]
10. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis. Ciszak K; Kulasek M; Barczak A; Grzelak J; Maćkowski S; Karpiński S Plant Signal Behav; 2015; 10(1):e982018. PubMed ID: 25654166 [TBL] [Abstract][Full Text] [Related]
11. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C; Amako K; Shiraishi N; Sugimoto T Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745 [TBL] [Abstract][Full Text] [Related]
12. Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Ware MA; Belgio E; Ruban AV Photosynth Res; 2015 Dec; 126(2-3):261-74. PubMed ID: 25702085 [TBL] [Abstract][Full Text] [Related]
13. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. Ikeuchi M; Uebayashi N; Sato F; Endo T Plant Cell Physiol; 2014 Jul; 55(7):1286-95. PubMed ID: 24850835 [TBL] [Abstract][Full Text] [Related]
14. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Ruban AV Plant Physiol; 2016 Apr; 170(4):1903-16. PubMed ID: 26864015 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Giovagnetti V; Ware MA; Ruban AV Photosynth Res; 2015 Aug; 125(1-2):179-89. PubMed ID: 25613087 [TBL] [Abstract][Full Text] [Related]
16. Effect of oxygen on the non-photochemical quenching of vascular plants and potential oxygen deficiency in the stroma of PsbS-knock-out rice. Zulfugarov IS; Wu G; Tovuu A; Lee CH Plant Sci; 2019 Sep; 286():1-6. PubMed ID: 31300135 [TBL] [Abstract][Full Text] [Related]
17. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769 [TBL] [Abstract][Full Text] [Related]
18. [Response of strawberry leaves photosynthesis to strong light and its mechanism]. Xu K; Guo Y; Zhang S; Zhou H; Zheng Y Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):73-8. PubMed ID: 15852961 [TBL] [Abstract][Full Text] [Related]
19. High light acclimation of Chromera velia points to photoprotective NPQ. Belgio E; Trsková E; Kotabová E; Ewe D; Prášil O; Kaňa R Photosynth Res; 2018 Mar; 135(1-3):263-274. PubMed ID: 28405863 [TBL] [Abstract][Full Text] [Related]
20. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Correa-Galvis V; Poschmann G; Melzer M; Stühler K; Jahns P Nat Plants; 2016 Feb; 2():15225. PubMed ID: 27249196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]