BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 22503858)

  • 1. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
    Xu J; Wang L; Wang L; Shen X; Xu W
    J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors.
    Xu J; Zhang H; Wang L; Liang G; Wang L; Shen X; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):239-47. PubMed ID: 20381412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.
    Ghasemi J; Saaidpour S
    Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the antileishmanial activity screening of 5-nitro-2-heterocyclic benzylidene hydrazides using different chemometrics methods.
    Garkani-Nejad Z; Ahmadi-Roudi B
    Eur J Med Chem; 2010 Feb; 45(2):719-26. PubMed ID: 19959260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New QSPR equations for prediction of aqueous solubility for military compounds.
    Muratov EN; Kuz'min VE; Artemenko AG; Kovdienko NA; Gorb L; Hill F; Leszczynski J
    Chemosphere; 2010 May; 79(8):887-90. PubMed ID: 20233619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives.
    Mandal AS; Roy K
    Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSPR prediction of flash point of esters by means of GFA and ANFIS.
    Khajeh A; Modarress H
    J Hazard Mater; 2010 Jul; 179(1-3):715-20. PubMed ID: 20381958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S
    FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds.
    Prana V; Fayet G; Rotureau P; Adamo C
    J Hazard Mater; 2012 Oct; 235-236():169-77. PubMed ID: 22871414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods.
    Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S
    J Mol Graph Model; 2019 Mar; 87():109-120. PubMed ID: 30537641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.