These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 22503952)
1. Acidic peptide hydrogel scaffolds enhance calcium phosphate mineral turnover into bone tissue. Amosi N; Zarzhitsky S; Gilsohn E; Salnikov O; Monsonego-Ornan E; Shahar R; Rapaport H Acta Biomater; 2012 Jul; 8(7):2466-75. PubMed ID: 22503952 [TBL] [Abstract][Full Text] [Related]
2. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
3. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration. Guan J; Zhang J; Li H; Zhu Z; Guo S; Niu X; Wang Y; Zhang C PLoS One; 2015; 10(5):e0125253. PubMed ID: 25970295 [TBL] [Abstract][Full Text] [Related]
4. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
5. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Rai B; Lin JL; Lim ZX; Guldberg RE; Hutmacher DW; Cool SM Biomaterials; 2010 Nov; 31(31):7960-70. PubMed ID: 20688388 [TBL] [Abstract][Full Text] [Related]
6. In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate. Jang HL; Zheng GB; Park J; Kim HD; Baek HR; Lee HK; Lee K; Han HN; Lee CK; Hwang NS; Lee JH; Nam KT Adv Healthc Mater; 2016 Jan; 5(1):128-36. PubMed ID: 25963732 [TBL] [Abstract][Full Text] [Related]
7. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model. Park KW; Yun YP; Kim SE; Song HR Int J Mol Sci; 2015 Nov; 16(11):26738-53. PubMed ID: 26561810 [TBL] [Abstract][Full Text] [Related]
9. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats. Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459 [TBL] [Abstract][Full Text] [Related]
10. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
11. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. Fang X; Lei L; Jiang T; Chen Y; Kang Y J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1739-1751. PubMed ID: 28888067 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Polak SJ; Levengood SK; Wheeler MB; Maki AJ; Clark SG; Johnson AJ Acta Biomater; 2011 Apr; 7(4):1760-71. PubMed ID: 21199692 [TBL] [Abstract][Full Text] [Related]
13. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects. Chatterjea A; van der Stok J; Danoux CB; Yuan H; Habibovic P; van Blitterswijk CA; Weinans H; de Boer J J Biomed Mater Res A; 2014 May; 102(5):1399-407. PubMed ID: 23733500 [TBL] [Abstract][Full Text] [Related]
14. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
15. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs. Thoma DS; Schneider D; Mir-Mari J; Hämmerle CH; Gemperli AC; Molenberg A; Dard M; Jung RE Clin Oral Implants Res; 2014 Apr; 25(4):511-21. PubMed ID: 23758284 [TBL] [Abstract][Full Text] [Related]
17. Graded porous β-tricalcium phosphate scaffolds enhance bone regeneration in mandible augmentation. Yang J; Kang Y; Browne C; Jiang T; Yang Y J Craniofac Surg; 2015 Mar; 26(2):e148-53. PubMed ID: 25675019 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli-derived BMP-2-absorbed β-TCP granules induce bone regeneration in rabbit critical-sized femoral segmental defects. Kuroiwa Y; Niikura T; Lee SY; Oe K; Iwakura T; Fukui T; Matsumoto T; Matsushita T; Nishida K; Kuroda R Int Orthop; 2019 May; 43(5):1247-1253. PubMed ID: 30097727 [TBL] [Abstract][Full Text] [Related]
19. In Vitro and In Vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration. Yuan B; Wang Z; Zhao Y; Tang Y; Zhou S; Sun Y; Chen X Macromol Biosci; 2021 Mar; 21(3):e2000336. PubMed ID: 33346401 [TBL] [Abstract][Full Text] [Related]
20. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material. Kawata M; Azuma K; Izawa H; Morimoto M; Saimoto H; Ifuku S Carbohydr Polym; 2016 Jan; 136():964-9. PubMed ID: 26572435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]