These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 22504326)

  • 1. Longitudinal in vivo imaging of cones in the alert chicken.
    Kisilak ML; Bunghardt K; Hunter JJ; Irving EL; Campbell MC
    Optom Vis Sci; 2012 May; 89(5):644-51. PubMed ID: 22504326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell imaging of the chick retina with adaptive optics.
    Headington K; Choi SS; Nickla D; Doble N
    Curr Eye Res; 2011 Oct; 36(10):947-57. PubMed ID: 21950701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M to L cone ratios determine eye sizes and baseline refractions in chickens.
    Gisbert S; Schaeffel F
    Exp Eye Res; 2018 Jul; 172():104-111. PubMed ID: 29608907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive-optics imaging of human cone photoreceptor distribution.
    Chui TY; Song H; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3021-9. PubMed ID: 19037393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution retinal imaging of cone-rod dystrophy.
    Wolfing JI; Chung M; Carroll J; Roorda A; Williams DR
    Ophthalmology; 2006 Jun; 113(6):1019.e1. PubMed ID: 16650474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy.
    Ooto S; Hangai M; Sakamoto A; Tsujikawa A; Yamashiro K; Ojima Y; Yamada Y; Mukai H; Oshima S; Inoue T; Yoshimura N
    Ophthalmology; 2010 Sep; 117(9):1800-9, 1809.e1-2. PubMed ID: 20673590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro development of S- and M-cones in rat retina.
    Arango-Gonzalez B; Szabó A; Pinzon-Duarte G; Lukáts A; Guenther E; Kohler K
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5320-7. PubMed ID: 20463318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution imaging with adaptive optics in patients with inherited retinal degeneration.
    Duncan JL; Zhang Y; Gandhi J; Nakanishi C; Othman M; Branham KE; Swaroop A; Roorda A
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3283-91. PubMed ID: 17591900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cone differentiation with no photopigment coexpression.
    Szepessy Z; Lukáts A; Fekete T; Barsi A; Röhlich P; Szél A
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3171-5. PubMed ID: 10967080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis of the different types of photoreceptors of the chicken (Gallus domesticus) retina and the effect of amblyopia in neonatal chicken.
    Wai MS; Lorke DE; Kung LS; Yew DT
    Microsc Res Tech; 2006 Feb; 69(2):99-107. PubMed ID: 16456833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes.
    García de la Cera E; Rodríguez G; Marcos S
    Vision Res; 2006 Feb; 46(4):579-89. PubMed ID: 16051309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary cone fields of the rabbit retina.
    Juliusson B; Bergström A; Röhlich P; Ehinger B; van Veen T; Szél A
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):811-8. PubMed ID: 8125743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia).
    Peichl L; Moutairou K
    Eur J Neurosci; 1998 Aug; 10(8):2586-94. PubMed ID: 9767389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone photoreceptor density in the Copenhagen Child Cohort at age 16-17 years.
    Eckmann-Hansen C; Hansen MH; Laigaard PP; Sander BA; Munch IC; Olsen EM; Skovgaard AM; Larsen M
    Ophthalmic Physiol Opt; 2021 Nov; 41(6):1292-1299. PubMed ID: 34559411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arrangement of the three cone classes in the living human eye.
    Roorda A; Williams DR
    Nature; 1999 Feb; 397(6719):520-2. PubMed ID: 10028967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy.
    Ooto S; Hangai M; Takayama K; Sakamoto A; Tsujikawa A; Oshima S; Inoue T; Yoshimura N
    Ophthalmology; 2011 May; 118(5):873-81. PubMed ID: 21074858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks.
    Mao J; Liu S; Wen D; Tan X; Fu C
    Curr Eye Res; 2006 Nov; 31(11):983-7. PubMed ID: 17114124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS; Lewis GP; Geller SF; Fisher SK
    Mol Vis; 2002 Apr; 8():114-8. PubMed ID: 11979236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.