These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22504436)

  • 1. Two identical nonylphenol monooxygenase genes linked to IS6100 and some putative insertion sequence elements in Sphingomonas sp. NP5.
    Takeo M; Maeda Y; Maeda J; Nishiyama N; Kitamura C; Kato DI; Negoro S
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1796-1807. PubMed ID: 22504436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram.
    Porter AW; Campbell BR; Kolvenbach BA; Corvini PF; Benndorf D; Rivera-Cancel G; Hay AG
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):261-72. PubMed ID: 22012340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation Potential of the Nonylphenol Monooxygenase of
    Takeo M; Akizuki J; Kawasaki A; Negoro S
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32093107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol.
    Porter AW; Hay AG
    Appl Environ Microbiol; 2007 Nov; 73(22):7373-9. PubMed ID: 17890335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids.
    Tabata M; Endo R; Ito M; Ohtsubo Y; Kumar A; Tsuda M; Nagata Y
    Biosci Biotechnol Biochem; 2011; 75(3):466-72. PubMed ID: 21389627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genes coding for the conversion of carbazole to catechol are flanked by IS6100 elements in Sphingomonas sp. strain XLDN2-5.
    Gai Z; Wang X; Liu X; Tai C; Tang H; He X; Wu G; Deng Z; Xu P
    PLoS One; 2010 Apr; 5(4):e10018. PubMed ID: 20368802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer.
    Dogra C; Raina V; Pal R; Suar M; Lal S; Gartemann KH; Holliger C; van der Meer JR; Lal R
    J Bacteriol; 2004 Apr; 186(8):2225-35. PubMed ID: 15060023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism.
    Corvini PF; Hollender J; Ji R; Schumacher S; Prell J; Hommes G; Priefer U; Vinken R; Schäffer A
    Appl Microbiol Biotechnol; 2006 Mar; 70(1):114-22. PubMed ID: 16091931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov.
    Pal R; Bala S; Dadhwal M; Kumar M; Dhingra G; Prakash O; Prabagaran SR; Shivaji S; Cullum J; Holliger C; Lal R
    Int J Syst Evol Microbiol; 2005 Sep; 55(Pt 5):1965-1972. PubMed ID: 16166696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolase CehA and Monooxygenase CfdC Are Responsible for Carbofuran Degradation in Sphingomonas sp. Strain CDS-1.
    Yan X; Jin W; Wu G; Jiang W; Yang Z; Ji J; Qiu J; He J; Jiang J; Hong Q
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3.
    Corvini PF; Vinken R; Hommes G; Mundt M; Hollender J; Meesters R; Schröder HF; Schmidt B
    Water Sci Technol; 2004; 50(5):189-94. PubMed ID: 15497847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase.
    Kivisaar M; Hõrak R; Kasak L; Heinaru A; Habicht J
    Plasmid; 1990 Jul; 24(1):25-36. PubMed ID: 2270227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation pathway of bisphenol A: does ipso substitution apply to phenols containing a quaternary alpha-carbon structure in the para position?
    Kolvenbach B; Schlaich N; Raoui Z; Prell J; Zühlke S; Schäffer A; Guengerich FP; Corvini PF
    Appl Environ Microbiol; 2007 Aug; 73(15):4776-84. PubMed ID: 17557840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dissolved humic acids in the biodegradation of a single isomer of nonylphenol by Sphingomonas sp.
    Li C; Ji R; Vinken R; Hommes G; Bertmer M; Schäffer A; Corvini PF
    Chemosphere; 2007 Aug; 68(11):2172-80. PubMed ID: 17367841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3.
    Corvini PF; Meesters R; Mundt M; Schäffer A; Schmidt B; Schröder HF; Verstraete W; Vinken R; Hollender J
    Biodegradation; 2007 Apr; 18(2):233-45. PubMed ID: 16821104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA.
    Dong W; Chen Q; Hou Y; Li S; Zhuang K; Huang F; Zhou J; Li Z; Wang J; Fu L; Zhang Z; Huang Y; Wang F; Cui Z
    Appl Environ Microbiol; 2015 Dec; 81(24):8254-64. PubMed ID: 26386060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram.
    Gabriel FL; Giger W; Guenther K; Kohler HP
    Appl Environ Microbiol; 2005 Mar; 71(3):1123-9. PubMed ID: 15746308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications.
    Fujii K; Urano N; Ushio H; Satomi M; Iida H; Ushio-Sata N; Kimura S
    J Biochem; 2000 Dec; 128(6):909-16. PubMed ID: 11098132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement.
    Gabriel FL; Heidlberger A; Rentsch D; Giger W; Guenther K; Kohler HP
    J Biol Chem; 2005 Apr; 280(16):15526-33. PubMed ID: 15665329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.