These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22504552)

  • 1. Thermal fingerprint of silica encapsulated phase change nanoparticles.
    Wang C; Hong Y; Zhang M; Hossain M; Luo Y; Su M
    Nanoscale; 2012 May; 4(10):3237-41. PubMed ID: 22504552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.
    Zhang M; Hong Y; Ding S; Hu J; Fan Y; Voevodin AA; Su M
    Nanoscale; 2010 Dec; 2(12):2790-7. PubMed ID: 20967399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.
    Hong Y; Ding S; Wu W; Hu J; Voevodin AA; Gschwender L; Snyder E; Chow L; Su M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1685-91. PubMed ID: 20527779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.
    Hu J; Hong Y; Muratore C; Su M; Voevodin AA
    Nanoscale; 2011 Sep; 3(9):3700-4. PubMed ID: 21796304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally addressed immunosorbent assay for multiplexed protein detections using phase change nanoparticles.
    Ma L; Wang C; Hong Y; Zhang M; Su M
    Anal Chem; 2010 Feb; 82(4):1186-90. PubMed ID: 20095620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive thermal detection of thrombin using aptamer-functionalized phase change nanoparticles.
    Wang C; Hossain M; Ma L; Ma Z; Hickman JJ; Su M
    Biosens Bioelectron; 2010 Oct; 26(2):437-43. PubMed ID: 20729059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous detection of multiple biomarkers with over three orders of concentration difference using phase change nanoparticles.
    Wang C; Sun Z; Ma L; Su M
    Anal Chem; 2011 Mar; 83(6):2215-9. PubMed ID: 21338061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning calorimetric detections of multiple DNA biomarkers contained in complex fluids.
    Wang C; Ma L; Chen LM; Chai KX; Su M
    Anal Chem; 2010 Mar; 82(5):1838-43. PubMed ID: 20146470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal, Viscoelastic and Surface Properties of Oxidized Field's Metal for Additive Microfabrication.
    Zamora R; Martínez-Pastor J; Faura F
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Properties and the Prospects of Thermal Energy Storage of Mg-25%Cu-15%Zn Eutectic Alloy as Phase Change Material.
    Sun Z; Li L; Cheng X; Zhu J; Li Y; Zhou W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method.
    Han ZH; Yang B; Qi Y; Cumings J
    Ultrasonics; 2011 May; 51(4):485-8. PubMed ID: 21215981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printed multilayer microtaggants with phase change nanoparticles for enhanced labeling security.
    Duong B; Liu H; Li C; Deng W; Ma L; Su M
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8909-12. PubMed ID: 24827166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covert thermal barcodes based on phase change nanoparticles.
    Duong B; Liu H; Ma L; Su M
    Sci Rep; 2014 Jun; 4():5170. PubMed ID: 24901064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed detection of molecular biomarkers with phase-change nanoparticles.
    Su M
    Nanomedicine (Lond); 2013 Feb; 8(2):253-63. PubMed ID: 23394155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite indium tin oxide thin films: formation induced by a large oxygen deficiency and properties.
    Nistor M; Perrière J; Hebert C; Seiler W
    J Phys Condens Matter; 2010 Feb; 22(4):045006. PubMed ID: 21386308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly(4-vinylpyridine) microspheres.
    Su Y; Yan R; Dan M; Xu J; Wang D; Zhang W; Liu S
    Langmuir; 2011 Jul; 27(14):8983-9. PubMed ID: 21671559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.
    Navarrete N; Gimeno-Furio A; Mondragon R; Hernandez L; Cabedo L; Cordoncillo E; Julia JE
    Sci Rep; 2017 Dec; 7(1):17580. PubMed ID: 29242510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles.
    Helgason T; Awad TS; Kristbergsson K; Decker EA; McClements DJ; Weiss J
    J Agric Food Chem; 2009 Sep; 57(17):8033-40. PubMed ID: 19691283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.