These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 22504707)

  • 1. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.
    Zijlstra P; Paulo PM; Orrit M
    Nat Nanotechnol; 2012 Apr; 7(6):379-82. PubMed ID: 22504707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD; Cheng SF; Chau LK; Wang CR
    Biosens Bioelectron; 2007 Jan; 22(6):926-32. PubMed ID: 16697633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Zhu Y; Chu PK
    Chem Commun (Camb); 2011 Jun; 47(24):6897-9. PubMed ID: 21603718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis.
    Tang L; Casas J
    Biosens Bioelectron; 2014 Nov; 61():70-5. PubMed ID: 24858675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod.
    Xu G; Zhu Y; Pang J
    Anal Sci; 2017; 33(2):223-227. PubMed ID: 28190844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C; Jiang X; Yang Y; Zhang J; Larson S; Zhao Y; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31242-31254. PubMed ID: 32608960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of cetyltrimethylammoniumbromide bilayer on gold nanorod by alkanethiol crosslinker for enhanced plasmon resonance sensitivity.
    Casas J; Venkataramasubramani M; Wang Y; Tang L
    Biosens Bioelectron; 2013 Nov; 49():525-30. PubMed ID: 23816849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational selection of gold nanorod geometry for label-free plasmonic biosensors.
    Nusz GJ; Curry AC; Marinakos SM; Wax A; Chilkoti A
    ACS Nano; 2009 Apr; 3(4):795-806. PubMed ID: 19296619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A.
    Park JH; Byun JY; Mun H; Shim WB; Shin YB; Li T; Kim MG
    Biosens Bioelectron; 2014 Sep; 59():321-7. PubMed ID: 24747570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.
    Zhao L; Ming T; Chen H; Liang Y; Wang J
    Nanoscale; 2011 Sep; 3(9):3849-59. PubMed ID: 21826320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips.
    Kazuma E; Tatsuma T
    Nanoscale; 2014 Feb; 6(4):2397-405. PubMed ID: 24435010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.