These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22505285)

  • 1. Chemical shift encoded water-fat separation using parallel imaging and compressed sensing.
    Sharma SD; Hu HH; Nayak KS
    Magn Reson Med; 2013 Feb; 69(2):456-66. PubMed ID: 22505285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving chemical shift encoded water-fat separation using object-based information of the magnetic field inhomogeneity.
    Sharma SD; Artz NS; Hernando D; Horng DE; Reeder SB
    Magn Reson Med; 2015 Feb; 73(2):597-604. PubMed ID: 24585487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated T2*-compensated fat fraction quantification using a joint parallel imaging and compressed sensing framework.
    Sharma SD; Hu HH; Nayak KS
    J Magn Reson Imaging; 2013 Nov; 38(5):1267-75. PubMed ID: 23390111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction.
    Hollingsworth KG; Higgins DM; McCallum M; Ward L; Coombs A; Straub V
    Magn Reson Med; 2014 Dec; 72(6):1610-9. PubMed ID: 24347306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-fat separation from a single spatiotemporally encoded echo based on nominal k-space peaking and joint regularized estimation.
    Chen Y; Cai C; Zhong J; Chen Z
    Magn Reson Med; 2015 Apr; 73(4):1441-9. PubMed ID: 24798405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressed sensing for chemical shift-based water-fat separation.
    Doneva M; Börnert P; Eggers H; Mertins A; Pauly J; Lustig M
    Magn Reson Med; 2010 Dec; 64(6):1749-59. PubMed ID: 20859998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA) MRI.
    Lu L; Donnola SB; Koontz M; Griswold MA; Duerk JL; Flask CA
    Magn Reson Med; 2015 Feb; 73(2):711-7. PubMed ID: 24639034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase and amplitude correction for multi-echo water-fat separation with bipolar acquisitions.
    Yu H; Shimakawa A; McKenzie CA; Lu W; Reeder SB; Hinks RS; Brittain JH
    J Magn Reson Imaging; 2010 May; 31(5):1264-71. PubMed ID: 20432366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for automatic identification of water and fat images from a symmetrically sampled dual-echo Dixon technique.
    Ahmad M; Liu Y; Slavens ZW; Low R; Merkle E; Hwang KP; Vu A; Ma J
    Magn Reson Imaging; 2010 Apr; 28(3):427-33. PubMed ID: 20061107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator.
    Burakiewicz J; Charles-Edwards GD; Goh V; Schaeffter T
    Magn Reson Med; 2015 Mar; 73(3):964-72. PubMed ID: 24723244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T.
    Gallichan D; Marques JP
    Magn Reson Med; 2017 Feb; 77(2):547-558. PubMed ID: 26877158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-fat separation with parallel imaging based on BLADE.
    Weng D; Pan Y; Zhong X; Zhuo Y
    Magn Reson Imaging; 2013 Jun; 31(5):656-63. PubMed ID: 23290479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraining the initial phase in water-fat separation.
    Bydder M; Yokoo T; Yu H; Carl M; Reeder SB; Sirlin CB
    Magn Reson Imaging; 2011 Feb; 29(2):216-21. PubMed ID: 21159457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turboprop IDEAL: a motion-resistant fat-water separation technique.
    Huo D; Li Z; Aboussouan E; Karis JP; Pipe JG
    Magn Reson Med; 2009 Jan; 61(1):188-95. PubMed ID: 19097201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved pediatric MR imaging with compressed sensing.
    Vasanawala SS; Alley MT; Hargreaves BA; Barth RA; Pauly JM; Lustig M
    Radiology; 2010 Aug; 256(2):607-16. PubMed ID: 20529991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized
    Geraghty BJ; Lau JY; Chen AP; Cunningham CH
    Magn Reson Med; 2017 Feb; 77(2):538-546. PubMed ID: 26806525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing.
    Huang C; Graff CG; Clarkson EW; Bilgin A; Altbach MI
    Magn Reson Med; 2012 May; 67(5):1355-66. PubMed ID: 22190358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction.
    Zhang T; Chowdhury S; Lustig M; Barth RA; Alley MT; Grafendorfer T; Calderon PD; Robb FJ; Pauly JM; Vasanawala SS
    J Magn Reson Imaging; 2014 Jul; 40(1):13-25. PubMed ID: 24127123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries.
    McClymont D; Teh I; Whittington HJ; Grau V; Schneider JE
    Magn Reson Med; 2016 Jul; 76(1):248-58. PubMed ID: 26302363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-point dixon method with flexible echo times.
    Berglund J; Ahlström H; Johansson L; Kullberg J
    Magn Reson Med; 2011 Apr; 65(4):994-1004. PubMed ID: 21413063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.