These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22505476)

  • 1. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor.
    Zhang D; Gan L; Cao Y; Wang Q; Qi L; Guo X
    Adv Mater; 2012 May; 24(20):2715-20. PubMed ID: 22505476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity.
    Sun Z; Liu Z; Li J; Tai GA; Lau SP; Yan F
    Adv Mater; 2012 Nov; 24(43):5878-83. PubMed ID: 22936561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum confinement effects on charge-transfer between PbS quantum dots and 4-mercaptopyridine.
    Fu X; Pan Y; Wang X; Lombardi JR
    J Chem Phys; 2011 Jan; 134(2):024707. PubMed ID: 21241146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.
    Nguyen KT; Li D; Borah P; Ma X; Liu Z; Zhu L; Grüner G; Xiong Q; Zhao Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8105-10. PubMed ID: 23855339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer.
    Lingley Z; Lu S; Madhukar A
    Nano Lett; 2011 Jul; 11(7):2887-91. PubMed ID: 21707024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors.
    Kufer D; Nikitskiy I; Lasanta T; Navickaite G; Koppens FH; Konstantatos G
    Adv Mater; 2015 Jan; 27(1):176-80. PubMed ID: 25400160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-pot synthesis of reduced graphene oxide-Cu₂S quantum dot hybrids for optoelectronic devices.
    Su Y; Lu X; Xie M; Geng H; Wei H; Yang Z; Zhang Y
    Nanoscale; 2013 Oct; 5(19):8889-93. PubMed ID: 23907643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenerated chemiluminescence from PbS quantum dots.
    Sun L; Bao L; Hyun BR; Bartnik AC; Zhong YW; Reed JC; Pang DW; Abruña HD; Malliaras GG; Wise FW
    Nano Lett; 2009 Feb; 9(2):789-93. PubMed ID: 19115964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays.
    Song T; Zhang F; Lei X; Xu Y; Lee S; Sun B
    Nanoscale; 2012 Feb; 4(4):1336-43. PubMed ID: 22261973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dominant role of exciton quenching in PbS quantum-dot-based photovoltaic devices.
    Wanger DD; Correa RE; Dauler EA; Bawendi MG
    Nano Lett; 2013; 13(12):5907-12. PubMed ID: 24256125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes.
    Das A; Wai CM
    Ultrason Sonochem; 2014 Mar; 21(2):892-900. PubMed ID: 24074959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance of Intrinsic Defects in PbS Quantum Dots.
    Zherebetskyy D; Zhang Y; Salmeron M; Wang LW
    J Phys Chem Lett; 2015 Dec; 6(23):4711-6. PubMed ID: 26554672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transfer between acenes and PbS nanocrystals.
    Dissanayake DM; Hatton RA; Lutz T; Curry RJ; Silva SR
    Nanotechnology; 2009 May; 20(19):195205. PubMed ID: 19420636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of lead (II) with a "turn-on" fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide.
    Li M; Zhou X; Guo S; Wu N
    Biosens Bioelectron; 2013 May; 43():69-74. PubMed ID: 23277342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of PbS quantum dot doped TiO2 nanotubes.
    Ratanatawanate C; Xiong C; Balkus KJ
    ACS Nano; 2008 Aug; 2(8):1682-8. PubMed ID: 19206372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path.
    Ren F; Zhao H; Vetrone F; Ma D
    Nanoscale; 2013 Sep; 5(17):7800-4. PubMed ID: 23887182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles.
    Axnanda S; Scheele M; Crumlin E; Mao B; Chang R; Rani S; Faiz M; Wang S; Alivisatos AP; Liu Z
    Nano Lett; 2013; 13(12):6176-82. PubMed ID: 24175587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices.
    Strasfeld DB; Dorn A; Wanger DD; Bawendi MG
    Nano Lett; 2012 Feb; 12(2):569-75. PubMed ID: 22250976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.