These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2250654)

  • 1. Successive binding of raf repressor to adjacent raf operator sites in vitro.
    Aslanidis C; Muiznieks I; Schmitt R
    Mol Gen Genet; 1990 Sep; 223(2):297-304. PubMed ID: 2250654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of two operators in regulating the plasmid-borne raf operon of Escherichia coli.
    Muiznieks I; Schmitt R
    Mol Gen Genet; 1994 Jan; 242(1):90-9. PubMed ID: 8277949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory elements of the raffinose operon: nucleotide sequences of operator and repressor genes.
    Aslanidis C; Schmitt R
    J Bacteriol; 1990 Apr; 172(4):2178-80. PubMed ID: 2180920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression.
    Charlier D; Roovers M; Van Vliet F; Boyen A; Cunin R; Nakamura Y; Glansdorff N; Piérard A
    J Mol Biol; 1992 Jul; 226(2):367-86. PubMed ID: 1640456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of the arginine repressor of Escherichia coli K12 to its operator sites.
    Tian G; Lim D; Carey J; Maas WK
    J Mol Biol; 1992 Jul; 226(2):387-97. PubMed ID: 1640457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12.
    Larson TJ; Cantwell JS; van Loo-Bhattacharya AT
    J Biol Chem; 1992 Mar; 267(9):6114-21. PubMed ID: 1556120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of expression of the Tn10-encoded tetracycline resistance operon. II. Interaction of RNA polymerase and TET repressor with the tet operon regulatory region.
    Hillen W; Schollmeier K; Gatz C
    J Mol Biol; 1984 Jan; 172(2):185-201. PubMed ID: 6229640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA looping in cellular repression of transcription of the galactose operon.
    Mandal N; Su W; Haber R; Adhya S; Echols H
    Genes Dev; 1990 Mar; 4(3):410-8. PubMed ID: 2186968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator.
    Lu CD; Houghton JE; Abdelal AT
    J Mol Biol; 1992 May; 225(1):11-24. PubMed ID: 1583685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the operon encoding ribonucleotide reductase: role of the negative sites in nrd repression.
    Tuggle CK; Fuchs JA
    J Bacteriol; 1990 Apr; 172(4):1711-8. PubMed ID: 2180902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNaseI footprinting studies of Escherichia coli biotin repressor-operator interactions.
    Lin KC; Shiuan D
    J Biochem; 1993 Nov; 114(5):670-6. PubMed ID: 8113219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose.
    Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W
    Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator.
    Nègre D; Cortay JC; Galinier A; Sauve P; Cozzone AJ
    J Mol Biol; 1992 Nov; 228(1):23-9. PubMed ID: 1447784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida.
    Hu L; Allison SL; Phillips AT
    J Bacteriol; 1989 Aug; 171(8):4189-95. PubMed ID: 2666390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an operator sequence for the Bacillus subtilis gnt operon.
    Fujita Y; Miwa Y
    J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron.
    Schmitt MP; Holmes RK
    J Bacteriol; 1994 Feb; 176(4):1141-9. PubMed ID: 8106325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.