These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

13948 related articles for article (PubMed ID: 22506599)

  • 1. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
    Bankevich A; Nurk S; Antipov D; Gurevich AA; Dvorkin M; Kulikov AS; Lesin VM; Nikolenko SI; Pham S; Prjibelski AD; Pyshkin AV; Sirotkin AV; Vyahhi N; Tesler G; Alekseyev MA; Pevzner PA
    J Comput Biol; 2012 May; 19(5):455-77. PubMed ID: 22506599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products.
    Nurk S; Bankevich A; Antipov D; Gurevich AA; Korobeynikov A; Lapidus A; Prjibelski AD; Pyshkin A; Sirotkin A; Sirotkin Y; Stepanauskas R; Clingenpeel SR; Woyke T; McLean JS; Lasken R; Tesler G; Alekseyev MA; Pevzner PA
    J Comput Biol; 2013 Oct; 20(10):714-37. PubMed ID: 24093227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembling short reads from jumping libraries with large insert sizes.
    Vasilinetc I; Prjibelski AD; Gurevich A; Korobeynikov A; Pevzner PA
    Bioinformatics; 2015 Oct; 31(20):3262-8. PubMed ID: 26040456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets.
    Chitsaz H; Yee-Greenbaum JL; Tesler G; Lombardo MJ; Dupont CL; Badger JH; Novotny M; Rusch DB; Fraser LJ; Gormley NA; Schulz-Trieglaff O; Smith GP; Evers DJ; Pevzner PA; Lasken RS
    Nat Biotechnol; 2011 Sep; 29(10):915-21. PubMed ID: 21926975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hybridSPAdes: an algorithm for hybrid assembly of short and long reads.
    Antipov D; Korobeynikov A; McLean JS; Pevzner PA
    Bioinformatics; 2016 Apr; 32(7):1009-15. PubMed ID: 26589280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPGA-SC : A Framework for de novo Assembly of Single-Cell Sequencing Reads.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Yi-Pan ; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1492-1503. PubMed ID: 31603794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ExSPAnder: a universal repeat resolver for DNA fragment assembly.
    Prjibelski AD; Vasilinetc I; Bankevich A; Gurevich A; Krivosheeva T; Nurk S; Pham S; Korobeynikov A; Lapidus A; Pevzner PA
    Bioinformatics; 2014 Jun; 30(12):i293-301. PubMed ID: 24931996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TruSPAdes: barcode assembly of TruSeq synthetic long reads.
    Bankevich A; Pevzner PA
    Nat Methods; 2016 Mar; 13(3):248-50. PubMed ID: 26828418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-IDBA: a de Novo assembler for metagenomic data.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2011 Jul; 27(13):i94-101. PubMed ID: 21685107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.
    Namiki T; Hachiya T; Tanaka H; Sakakibara Y
    Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
    Afiahayati ; Sato K; Sakakibara Y
    DNA Res; 2015 Feb; 22(1):69-77. PubMed ID: 25431440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.
    Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D
    PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell genome sequencing.
    Yilmaz S; Singh AK
    Curr Opin Biotechnol; 2012 Jun; 23(3):437-43. PubMed ID: 22154471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using SPAdes De Novo Assembler.
    Prjibelski A; Antipov D; Meleshko D; Lapidus A; Korobeynikov A
    Curr Protoc Bioinformatics; 2020 Jun; 70(1):e102. PubMed ID: 32559359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omega: an overlap-graph de novo assembler for metagenomics.
    Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C
    Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 698.