These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22506706)

  • 1. Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil.
    Kobayashi T; Kaminaga H; Navarro RR; Iimura Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(8):1138-45. PubMed ID: 22506706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of PAHs in contaminated soil by extraction with aqueous DNA followed by biodegradation with a pure culture of Sphingomonas sp.
    Navarro RR; Iimura Y; Ichikawa H; Tatsumi K
    Chemosphere; 2008 Nov; 73(9):1414-9. PubMed ID: 18814900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost.
    Kobayashi T; Murai Y; Tatsumi K; Iimura Y
    Sci Total Environ; 2009 Nov; 407(22):5805-10. PubMed ID: 19660784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential responses of eubacterial, Mycobacterium, and Sphingomonas communities in polycyclic aromatic hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile.
    Uyttebroek M; Spoden A; Ortega-Calvo JJ; Wouters K; Wattiau P; Bastiaens L; Springael D
    J Environ Qual; 2007; 36(5):1403-11. PubMed ID: 17766819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of polycyclic aromatic hydrocarbons in soil by a two-step sequential treatment.
    Pizzul L; Sjögren A; Castillo Mdel P; Stenström J
    Biodegradation; 2007 Oct; 18(5):607-16. PubMed ID: 17216539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant.
    Zhou W; Yang J; Lou L; Zhu L
    Environ Pollut; 2011 May; 159(5):1198-204. PubMed ID: 21353355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils.
    Wu G; Kechavarzi C; Li X; Sui H; Pollard SJ; Coulon F
    Chemosphere; 2013 Feb; 90(8):2240-6. PubMed ID: 23141842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of polycyclic aromatic hydrocarbons from contaminated soil by aqueous DNA solution.
    Navarro RR; Ichikawa H; Iimura Y; Tatsumi K
    Environ Sci Technol; 2007 Jun; 41(12):4240-5. PubMed ID: 17626419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.
    Niqui-Arroyo JL; Ortega-Calvo JJ
    J Environ Qual; 2007; 36(5):1444-51. PubMed ID: 17766823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation.
    Seo Y; Lee WH; Sorial G; Bishop PL
    Environ Pollut; 2009 Jan; 157(1):95-101. PubMed ID: 18973969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil.
    Villemur R; Déziel E; Benachenhou A; Marcoux J; Gauthier E; Lépine F; Beaudet R; Comeau Y
    Biotechnol Prog; 2000; 16(6):966-72. PubMed ID: 11101322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.
    Luster-Teasley S; Ubaka-Blackmoore N; Masten SJ
    J Hazard Mater; 2009 Aug; 167(1-3):701-6. PubMed ID: 19223120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Enhanced bioremediation of coking plant soils contaminated with polycyclic aromatic hydrocarbons].
    Lu XX; Li XL; Ma J; Wu SK; Chen CQ; Wu W
    Huan Jing Ke Xue; 2011 Mar; 32(3):864-9. PubMed ID: 21634189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution and removal of PAHs from a contaminated soil using sunflower oil.
    Gong Z; Alef K; Wilke BM; Li P
    Chemosphere; 2005 Jan; 58(3):291-8. PubMed ID: 15581932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAH contaminated soil remediation by reusing an aqueous solution of cyclodextrins.
    Petitgirard A; Djehiche M; Persello J; Fievet P; Fatin-Rouge N
    Chemosphere; 2009 May; 75(6):714-8. PubMed ID: 19251300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils.
    Usman M; Faure P; Ruby C; Hanna K
    Chemosphere; 2012 Apr; 87(3):234-40. PubMed ID: 22273186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.
    Sun M; Luo Y; Teng Y; Christie P; Jia Z; Li Z
    Biodegradation; 2013 Jun; 24(3):365-75. PubMed ID: 23001628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.