These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22506786)

  • 1. Human odometry verifies the symmetry perspective on bipedal gaits.
    Turvey MT; Harrison SJ; Frank TD; Carello C
    J Exp Psychol Hum Percept Perform; 2012 Aug; 38(4):1014-25. PubMed ID: 22506786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry and order parameter dynamics of the human odometer.
    Abdolvahab M; Carello C; Pinto C; Turvey MT; Frank TD
    Biol Cybern; 2015 Feb; 109(1):63-73. PubMed ID: 25201495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry in locomotor central pattern generators and animal gaits.
    Golubitsky M; Stewart I; Buono PL; Collins JJ
    Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human odometer is gait-symmetry specific.
    Turvey MT; Romaniak-Gross C; Isenhower RW; Arzamarski R; Harrison S; Carello C
    Proc Biol Sci; 2009 Dec; 276(1677):4309-14. PubMed ID: 19740881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence of human odometry by walk and run is indifferent to self-selected speed.
    Isenhower RW; Kant V; Frank TD; Pinto CM; Carello C; Turvey MT
    J Mot Behav; 2012; 44(1):47-52. PubMed ID: 22269023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of coordination patterns during unsteady locomotion in mammals.
    Abourachid A; Herbin M; Hackert R; Maes L; Martin V
    J Exp Biol; 2007 Jan; 210(Pt 2):366-72. PubMed ID: 17210971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 May; 50(5):552-67. PubMed ID: 16516949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of central pattern generators for quadruped locomotion. II. Secondary gaits.
    Buono PL
    J Math Biol; 2001 Apr; 42(4):327-46. PubMed ID: 11374123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of central pattern generators for quadruped locomotion. I. Primary gaits.
    Buono PL; Golubitsky M
    J Math Biol; 2001 Apr; 42(4):291-326. PubMed ID: 11374122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theory of metabolic costs for bipedal gaits.
    Minetti AE; Alexander RM
    J Theor Biol; 1997 Jun; 186(4):467-76. PubMed ID: 9278722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings.
    Goetz L; Piallat B; Thibaudier Y; Montigon O; David O; Chabardès S
    J Neurosci Methods; 2012 Mar; 204(2):306-17. PubMed ID: 22155386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mouse gaits using a novel force-sensing exercise wheel.
    Smith BJ; Cullingford L; Usherwood JR
    J Appl Physiol (1985); 2015 Sep; 119(6):704-18. PubMed ID: 26139220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady and transient coordination structures of walking and running.
    Lamoth CJ; Daffertshofer A; Huys R; Beek PJ
    Hum Mov Sci; 2009 Jun; 28(3):371-86. PubMed ID: 19027972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlimb coordination, gait, and neural control of quadrupedalism in chimpanzees.
    Shapiro LJ; Anapol FC; Jungers WL
    Am J Phys Anthropol; 1997 Feb; 102(2):177-86. PubMed ID: 9066899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central pattern generators for bipedal locomotion.
    Pinto CM; Golubitsky M
    J Math Biol; 2006 Sep; 53(3):474-89. PubMed ID: 16874500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.