BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 22506963)

  • 1. Granule matrix property and rapid "kiss-and-run" exocytosis contribute to the different kinetics of catecholamine release from carotid glomus and adrenal chromaffin cells at matched quantal size.
    Wang N; Lee AK; Yan L; Simpson MR; Tse A; Tse FW
    Can J Physiol Pharmacol; 2012 Jun; 90(6):791-801. PubMed ID: 22506963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of quantal size and cAMP on the kinetics of quantal catecholamine release from rat chromaffin cells.
    Tang KS; Wang N; Tse A; Tse FW
    Biophys J; 2007 Apr; 92(8):2735-46. PubMed ID: 17237205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells.
    Shang S; Wang C; Liu B; Wu Q; Zhang Q; Liu W; Zheng L; Xu H; Kang X; Zhang X; Wang Y; Zheng H; Wang S; Xiong W; Liu T; Zhou Z
    Cell Calcium; 2014 Sep; 56(3):202-7. PubMed ID: 25103334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells.
    Tse A; Lee AK; Takahashi N; Gong A; Kasai H; Tse FW
    J Neurogenet; 2018 Sep; 32(3):267-278. PubMed ID: 30484390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells.
    Camacho M; Machado JD; Montesinos MS; Criado M; Borges R
    J Neurochem; 2006 Jan; 96(2):324-34. PubMed ID: 16336635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The exocytotic event in chromaffin cells revealed by patch amperometry.
    Albillos A; Dernick G; Horstmann H; Almers W; Alvarez de Toledo G; Lindau M
    Nature; 1997 Oct; 389(6650):509-12. PubMed ID: 9333242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of multiple populations of granules in rat adrenal chromaffin cells by culture duration and cyclic AMP.
    Tang KS; Tse A; Tse FW
    J Neurochem; 2005 Mar; 92(5):1126-39. PubMed ID: 15715663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules.
    Wang N; Kwan C; Gong X; de Chaves EP; Tse A; Tse FW
    J Neurosci; 2010 Mar; 30(11):3904-11. PubMed ID: 20237261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.
    Segura-Chama P; López-Bistrain P; Pérez-Armendáriz EM; Jiménez-Pérez N; Millán-Aldaco D; Hernández-Cruz A
    Pflugers Arch; 2015 Nov; 467(11):2307-23. PubMed ID: 25791627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exocytosis of catecholamine (CA)-containing and CA-free granules in chromaffin cells.
    Tabares L; Alés E; Lindau M; Alvarez de Toledo G
    J Biol Chem; 2001 Oct; 276(43):39974-9. PubMed ID: 11524425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats.
    Miranda-Ferreira R; de Pascual R; de Diego AM; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG
    J Pharmacol Exp Ther; 2008 Feb; 324(2):685-93. PubMed ID: 17962518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of quantal size and immediately releasable granules in rat chromaffin cells by glucocorticoid.
    Xu J; Tang KS; Lu VB; Weerasinghe CP; Tse A; Tse FW
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1122-33. PubMed ID: 15930142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M; Clark CL; Powis DA
    Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Co-release of Two Neurotransmitters from a Vesicle Fusion Pore in Mammalian Adrenal Chromaffin Cells.
    Zhang Q; Liu B; Wu Q; Liu B; Li Y; Sun S; Wang Y; Wu X; Chai Z; Jiang X; Liu X; Hu M; Wang Y; Yang Y; Wang L; Kang X; Xiong Y; Zhou Y; Chen X; Zheng L; Zhang B; Wang C; Zhu F; Zhou Z
    Neuron; 2019 Apr; 102(1):173-183.e4. PubMed ID: 30773347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamin 1 Restrains Vesicular Release to a Subquantal Mode In Mammalian Adrenal Chromaffin Cells.
    Wu Q; Zhang Q; Liu B; Li Y; Wu X; Kuo S; Zheng L; Wang C; Zhu F; Zhou Z
    J Neurosci; 2019 Jan; 39(2):199-211. PubMed ID: 30381405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs.
    Peña Del Castillo JG; Segura-Chama P; Rincón-Heredia R; Millán-Aldaco D; Giménez-Molina Y; Villanueva J; Gutiérrez LM; Hernández-Cruz A
    Pflugers Arch; 2021 Nov; 473(11):1775-1793. PubMed ID: 34510285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the endoplasmic reticulum and mitochondria on quantal catecholamine release from chromaffin cells of control and hypertensive rats.
    Miranda-Ferreira R; de Pascual R; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG
    J Pharmacol Exp Ther; 2009 Apr; 329(1):231-40. PubMed ID: 19131584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual role of calbindin-D28K in vesicular catecholamine release from mouse chromaffin cells.
    Westerink RH; Rook MB; Beekwilder JP; Wadman WJ
    J Neurochem; 2006 Oct; 99(2):628-40. PubMed ID: 16824046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.