BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22507179)

  • 1. Application of time-of-flight-secondary ion mass spectrometry for the detection of enzyme activity on solid wood substrates.
    Goacher RE; Edwards EA; Yakunin AF; Mims CA; Master ER
    Anal Chem; 2012 May; 84(10):4443-51. PubMed ID: 22507179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.
    Goacher RE; Braham EJ; Michienzi CL; Flick RM; Yakunin AF; Master ER
    Physiol Plant; 2018 Sep; 164(1):5-16. PubMed ID: 29286544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the library of secondary ions that distinguish lignin and polysaccharides in time-of-flight secondary ion mass spectrometry analysis of wood.
    Goacher RE; Jeremic D; Master ER
    Anal Chem; 2011 Feb; 83(3):804-12. PubMed ID: 21190327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards practical time-of-flight secondary ion mass spectrometry lignocellulolytic enzyme assays.
    Goacher RE; Tsai AY; Master ER
    Biotechnol Biofuels; 2013 Sep; 6(1):132. PubMed ID: 24034438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars.
    Mou HY; Orblin E; Kruus K; Fardim P
    Bioresour Technol; 2013 Aug; 142():540-5. PubMed ID: 23774220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium pentoxide substrates using time-of-flight secondary ion mass spectrometry and multivariate analysis.
    Wagner MS; Pasche S; Castner DG; Textor M
    Anal Chem; 2004 Mar; 76(5):1483-92. PubMed ID: 14987107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of the components in DNA.
    May CJ; Canavan HE; Castner DG
    Anal Chem; 2004 Feb; 76(4):1114-22. PubMed ID: 14961746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of insulin adsorption in the presence of albumin by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.
    Henry M; Dupont-Gillain C; Bertrand P
    Langmuir; 2008 Jan; 24(2):458-64. PubMed ID: 18072791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS.
    Mahajan S; Jeremic D; Goacher RE; Master ER
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1303-11. PubMed ID: 22290642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity.
    Kudanga T; Prasetyo EN; Widsten P; Kandelbauer A; Jury S; Heathcote C; Sipilä J; Weber H; Nyanhongo GS; Guebitz GM
    Bioresour Technol; 2010 Apr; 101(8):2793-9. PubMed ID: 20044252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of composition C4 explosives using time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.
    Mahoney CM; Fahey AJ; Steffens KL; Benner BA; Lareau RT
    Anal Chem; 2010 Sep; 82(17):7237-48. PubMed ID: 20698494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry.
    Saito K; Watanabe Y; Shirakawa M; Matsushita Y; Imai T; Koike T; Sano Y; Funada R; Fukazawa K; Fukushima K
    Plant J; 2012 Feb; 69(3):542-52. PubMed ID: 21978273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the characteristic secondary ions of lignin polymer using ToF-SIMS.
    Saito K; Kato T; Tsuji Y; Fukushima K
    Biomacromolecules; 2005; 6(2):678-83. PubMed ID: 15762629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry.
    Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP
    Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood.
    Palonen H; Viikari L
    Biotechnol Bioeng; 2004 Jun; 86(5):550-7. PubMed ID: 15129438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.
    MacDonald J; Goacher RE; Abou-Zaid M; Master ER
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8013-20. PubMed ID: 27138198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases.
    Jeremic D; Goacher RE; Yan R; Karunakaran C; Master ER
    Biotechnol Biofuels; 2014; 7(1):496. PubMed ID: 25598840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ToF-SIMS and XPS studies of the adsorption characteristics of a Zn-porphyrin on TiO2.
    Killian MS; Gnichwitz JF; Hirsch A; Schmuki P; Kunze J
    Langmuir; 2010 Mar; 26(5):3531-8. PubMed ID: 20175576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha.
    Liers C; Ullrich R; Steffen KT; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):573-9. PubMed ID: 16021487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topochemical Analysis of Cell Wall Components by TOF-SIMS.
    Aoki D; Fukushima K
    Methods Mol Biol; 2017; 1544():249-256. PubMed ID: 28050841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.