These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22507256)

  • 1. Breast tissue contrast-simulating materials using energy-dispersive X-ray diffraction.
    Alkhateeb SM; Abdelkader MH; Bradley DA; Pani S
    Appl Radiat Isot; 2012 Jul; 70(7):1446-50. PubMed ID: 22507256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of a laboratory based X-ray diffraction imaging system for material and tissue characterization.
    Abdelkader MH; Alkhateeb SM; Bradley DA; Pani S
    Appl Radiat Isot; 2012 Jul; 70(7):1325-30. PubMed ID: 22516718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimization of an energy-dispersive X-ray diffraction system for potential clinical application.
    Chaparian A; Oghabian MA; Changizi V; Farquharson MJ
    Appl Radiat Isot; 2010 Dec; 68(12):2237-45. PubMed ID: 20674378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography.
    Pani S; Cook EJ; Horrocks JA; Jones JL; Speller RD
    Appl Radiat Isot; 2010 Oct; 68(10):1980-7. PubMed ID: 20472453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.
    Bohndiek SE; Cook EJ; Arvanitis CD; Olivo A; Royle GJ; Clark AT; Prydderch ML; Turchetta R; Speller RD
    Phys Med Biol; 2008 Feb; 53(3):655-72. PubMed ID: 18199908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent structure of liquid water investigated by means of energy-dispersive x-ray diffraction and molecular dynamics simulations.
    Guse C; Simionescu A; Schünemann B; Hentschke R; Bomsdorf H
    J Phys Condens Matter; 2010 Aug; 22(32):325105. PubMed ID: 21386487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular calibration in energy dispersive X-Ray diffraction by using genetic algorithms.
    Brunetti A; Albertini VR; Bailo D
    J Xray Sci Technol; 2009; 17(3):253-64. PubMed ID: 19893216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study.
    Cook E; Fong R; Horrocks J; Wilkinson D; Speller R
    Appl Radiat Isot; 2007 Aug; 65(8):959-67. PubMed ID: 17512207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of ultrasmall superparamagnetic iron oxide (USPIO) particles in aqueous suspension by energy dispersive X-ray diffraction (EDXD).
    Di Marco M; Port M; Couvreur P; Dubernet C; Ballirano P; Sadun C
    J Am Chem Soc; 2006 Aug; 128(31):10054-9. PubMed ID: 16881633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study of human breast tissue using synchrotron radiation combining WAXS and SAXS techniques.
    Conceição AL; Antoniassi M; Poletti ME; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):799-803. PubMed ID: 19857973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
    Daniels JE; Drakopoulos M
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):463-8. PubMed ID: 19535858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction-enhanced imaging of uterine leiomyomas.
    Liu C; Zhang Y; Zhang X; Yang W; Peng W; Shi D; Zhu P; Tian Y; Huang W
    Med Sci Monit; 2005 May; 11(5):MT33-38. PubMed ID: 15874903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to synchrotron energy-dispersive X-ray diffraction computed tomography.
    Lazzari O; Egan CK; Jacques SD; Sochi T; Di Michiel M; Cernik RJ; Barnes P
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):471-7. PubMed ID: 22713876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined X-ray diffraction and kinetic depth effect imaging.
    Dicken A; Rogers K; Evans P; Chan JW; Rogers J; Godber S
    Opt Express; 2011 Mar; 19(7):6406-13. PubMed ID: 21451668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a pnCCD in X-ray diffraction: a three-dimensional X-ray detector.
    Leitenberger W; Hartmann R; Pietsch U; Andritschke R; Starke I; Strüder L
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):449-57. PubMed ID: 18728315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging.
    Arfelli F; Rigon L; Menk RH
    Phys Med Biol; 2010 Mar; 55(6):1643-58. PubMed ID: 20182004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.
    Geraki K; Farquharson MJ; Bradley DA
    Phys Med Biol; 2004 Jan; 49(1):99-110. PubMed ID: 14971775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging.
    Zhang X; Liu XS; Yang XR; Chen SL; Zhu PP; Yuan QX
    Phys Med Biol; 2008 Oct; 53(20):5735-43. PubMed ID: 18824782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of urinary stone components by x-ray coherent scatter: characterizing composition beyond laboratory x-ray diffractometry.
    Davidson MT; Batchelar DL; Velupillai S; Denstedt JD; Cunningham IA
    Phys Med Biol; 2005 Aug; 50(16):3773-86. PubMed ID: 16077226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system.
    Olivo A; Speller R
    Phys Med Biol; 2006 Jun; 51(12):3015-30. PubMed ID: 16757859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.