These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22507295)

  • 1. Mandibular reconstruction in the rabbit using beta-tricalcium phosphate (β-TCP) scaffolding and recombinant bone morphogenetic protein 7 (rhBMP-7) - histological, radiographic and mechanical evaluations.
    Busuttil Naudi K; Ayoub A; McMahon J; Di Silvio L; Lappin D; Hunter KD; Barbenel J
    J Craniomaxillofac Surg; 2012 Dec; 40(8):e461-9. PubMed ID: 22507295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction.
    Lee S; Choi D; Shim JH; Nam W
    Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mandibular reconstruction using a calcium phosphate/polyethylene glycol hydrogel carrier with BMP-2.
    Gruber RM; Krohn S; Mauth C; Dard M; Molenberg A; Lange K; Perske C; Schliephake H
    J Clin Periodontol; 2014 Aug; 41(8):820-6. PubMed ID: 24738890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects.
    Ahn SH; Kim CS; Suk HJ; Lee YJ; Choi SH; Chai JK; Kim CK; Han SB; Cho KS
    J Periodontol; 2003 Jun; 74(6):787-97. PubMed ID: 12886988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration in critical-size defects of the mandible using biomechanically adapted CAD/CAM hybrid scaffolds: An in vivo study in miniature pigs.
    Wagner J; Luck S; Loger K; Açil Y; Spille JH; Kurz S; Ahlhelm M; Schwarzer-Fischer E; Ingwersen LC; Jonitz-Heincke A; Sedaghat S; Wiltfang J; Naujokat H
    J Craniomaxillofac Surg; 2024 Jan; 52(1):127-135. PubMed ID: 38129185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2).
    Herford AS; Boyne PJ
    J Oral Maxillofac Surg; 2008 Apr; 66(4):616-24. PubMed ID: 18355584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant human bone morphogenetic protein 2 combined with an osteoconductive bulking agent for mandibular continuity defects in nonhuman primates.
    Herford AS; Lu M; Buxton AN; Kim J; Henkin J; Boyne PJ; Caruso JM; Rungcharassaeng K; Hong J
    J Oral Maxillofac Surg; 2012 Mar; 70(3):703-16. PubMed ID: 21549480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of expanded bone marrow-derived osteoprogenitor cells seeded into polycaprolactone/tricalcium phosphate scaffolds in new bone regeneration of rabbit mandibular defects.
    Nuntanaranont T; Promboot T; Sutapreyasri S
    J Mater Sci Mater Med; 2018 Feb; 29(3):24. PubMed ID: 29427037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Bone Regeneration Using Adipose-Derived Stem Cells in Critical-Size Alveolar Ridge Defects: An Experimental Study in a Dog Model.
    Alvira-González J; Sánchez-Garcés MÀ; Cairó JR; Del Pozo MR; Sánchez CM; Gay-Escoda C
    Int J Oral Maxillofac Implants; 2016; 31(1):196-203. PubMed ID: 26800179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects.
    Hirota M; Matsui Y; Mizuki N; Kishi T; Watanuki K; Ozawa T; Fukui T; Shoji S; Adachi M; Monden Y; Iwai T; Tohnai I
    Dent Mater J; 2009 Mar; 28(2):153-61. PubMed ID: 19496394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a beta-tricalcium phosphate carrier into one-wall intrabony defects in dogs.
    Lee JS; Wikesjö UM; Jung UW; Choi SH; Pippig S; Siedler M; Kim CK
    J Clin Periodontol; 2010 Apr; 37(4):382-9. PubMed ID: 20447262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mandibular reconstruction using bone morphogenetic protein 2: long-term follow-up in a canine model.
    Toriumi DM; O'Grady K; Horlbeck DM; Desai D; Turek TJ; Wozney J
    Laryngoscope; 1999 Sep; 109(9):1481-9. PubMed ID: 10499059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of long intercalated rib defects in dogs using recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate.
    Hoshino M; Egi T; Terai H; Namikawa T; Kato M; Hashimoto Y; Takaoka K
    J Biomed Mater Res A; 2009 Aug; 90(2):514-21. PubMed ID: 18563826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects.
    Hong SJ; Kim CS; Han DK; Cho IH; Jung UW; Choi SH; Kim CK; Cho KS
    Biomaterials; 2006 Jul; 27(20):3810-6. PubMed ID: 16574220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of rhBMP-2 and PRP delivery by biodegradable β-tricalcium phosphate scaffolds on new bone formation in a non-through rabbit cranial defect model.
    Lim HP; Mercado-Pagan AE; Yun KD; Kang SS; Choi TH; Bishop J; Koh JT; Maloney W; Lee KM; Yang YP; Park SW
    J Mater Sci Mater Med; 2013 Aug; 24(8):1895-903. PubMed ID: 23779152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.