BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 22507874)

  • 1. Single-fraction simulation of relative cell survival in response to uniform versus hypoxia-targeted dose escalation.
    Axente M; Lin PS; Pugachev A
    Phys Med Biol; 2012 May; 57(9):2757-74. PubMed ID: 22507874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical effectiveness of cell survival in fractionated radiotherapy with hypoxia-targeted dose escalation.
    Chvetsov AV; Rajendran JG; Zeng J; Patel SA; Bowen SR; Kim EY
    Med Phys; 2017 May; 44(5):1975-1982. PubMed ID: 28236652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.
    Espinoza I; Peschke P; Karger CP
    Med Phys; 2015 Jan; 42(1):90-102. PubMed ID: 25563250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes.
    Ruggieri R; Nahum AE
    Med Phys; 2006 Nov; 33(11):4044-55. PubMed ID: 17153384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume dependence in hypoxia-targeted dose escalation.
    Chvetsov AV; Zeng J; Rajendran JG
    Med Phys; 2018 Nov; 45(11):5325-5331. PubMed ID: 30192391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reoxygenation of hypoxic cells by tumor shrinkage during irradiation. A computer simulation.
    Kocher M; Treuer H
    Strahlenther Onkol; 1995 Apr; 171(4):219-30. PubMed ID: 7740410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes.
    Antonovic L; Lindblom E; Dasu A; Bassler N; Furusawa Y; Toma-Dasu I
    J Radiat Res; 2014 Sep; 55(5):902-11. PubMed ID: 24728013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of chronic hypoxic cells to low dose-rate irradiation.
    Pettersen EO; Bjørhovde I; Søvik A; Edin NF; Zachar V; Hole EO; Sandvik JA; Ebbesen P
    Int J Radiat Biol; 2007 May; 83(5):331-45. PubMed ID: 17457758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction.
    Daşu A; Denekamp J
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1083-94. PubMed ID: 10192360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor.
    Otsuka S; Shibamoto Y; Iwata H; Murata R; Sugie C; Ito M; Ogino H
    Int J Radiat Oncol Biol Phys; 2011 Dec; 81(5):1538-43. PubMed ID: 22115556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume effects in the TCP for hypoxic and oxygenated tumors.
    Chvetsov AV; Stewart RD; Kim M; Meyer J; Rengan R
    Med Phys; 2020 Sep; 47(9):4626-4633. PubMed ID: 32452034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy.
    Wouters BG; Brown JM
    Radiat Res; 1997 May; 147(5):541-50. PubMed ID: 9146699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To fractionate or not to fractionate? That is the question for the radiosurgery of hypoxic tumors.
    Toma-Dasu I; Sandström H; Barsoum P; Dasu A
    J Neurosurg; 2014 Dec; 121 Suppl():110-5. PubMed ID: 25434944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal fractionation in radiotherapy for non-small cell lung cancer--a modelling approach.
    Lindblom E; Dasu A; Toma-Dasu I
    Acta Oncol; 2015; 54(9):1592-8. PubMed ID: 26217986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed 88% TCP dose for SBRT of NSCLC from tumour hypoxia modelling.
    Ruggieri R; Stavreva N; Naccarato S; Stavrev P
    Phys Med Biol; 2013 Jul; 58(13):4611-20. PubMed ID: 23771131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the tumour bed effect on microenvironment, radiobiological hypoxia and the outcome of fractionated radiotherapy of human FaDu squamous-cell carcinoma growing in the nude mouse.
    Zips D; Eicheler W; Brüchner K; Jackisch T; Geyer P; Petersen C; van der Kogel AJ; Baumann M
    Int J Radiat Biol; 2001 Dec; 77(12):1185-93. PubMed ID: 11747543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy.
    Paganetti H
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(3):892-900. PubMed ID: 16199319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations of dynamic contrast-enhanced MRI in monitoring radiation-induced changes in the fraction of radiobiologically hypoxic cells in human melanoma xenografts.
    Benjaminsen IC; Melås EA; Mathiesen BS; Rofstad EK
    J Magn Reson Imaging; 2008 Nov; 28(5):1209-18. PubMed ID: 18972344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of tumor radioresponsiveness and metastatic potential by dynamic contrast-enhanced magnetic resonance imaging.
    Øvrebø KM; Gulliksrud K; Mathiesen B; Rofstad EK
    Int J Radiat Oncol Biol Phys; 2011 Sep; 81(1):255-61. PubMed ID: 21816291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study.
    Petit SF; Dekker AL; Seigneuric R; Murrer L; van Riel NA; Nordsmark M; Overgaard J; Lambin P; Wouters BG
    Phys Med Biol; 2009 Apr; 54(7):2179-96. PubMed ID: 19293465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.