BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22508115)

  • 1. Photocatalytic oxidation of humic acid and its effect on haloacetic acid formation potential: a fluorescence spectrometry study.
    Xiaoju Y; Ruiling B; Shuili Y; Qiongfang L; Wei C
    Water Sci Technol; 2012; 65(9):1548-56. PubMed ID: 22508115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential.
    Li A; Zhao X; Liu H; Qu J
    Water Res; 2011 Nov; 45(18):6131-40. PubMed ID: 21955983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.
    Mariquit EG; Salim C; Hinode H
    Ann N Y Acad Sci; 2008 Oct; 1140():389-93. PubMed ID: 18991939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid.
    Valencia S; MarĂ­n JM; Restrepo G; Frimmel FH
    Sci Total Environ; 2013 Jan; 442():207-14. PubMed ID: 23178828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of dissolved organic matter by oxidative polymerization with horseradish peroxidase.
    Jee SH; Kim YJ; Ko SO
    Water Sci Technol; 2010; 62(2):340-6. PubMed ID: 20651438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions.
    Tsimas ES; Tyrovola K; Xekoukoulotakis NP; Nikolaidis NP; Diamadopoulos E; Mantzavinos D
    J Hazard Mater; 2009 Sep; 169(1-3):376-85. PubMed ID: 19395168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process.
    Fang H; Sun DD; Wu M; Phay W; Tay JH
    Water Sci Technol; 2005; 51(6-7):373-80. PubMed ID: 16003999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.
    Wang K; Guo J; Yang M; Junji H; Deng R
    J Hazard Mater; 2009 Mar; 162(2-3):1243-8. PubMed ID: 18692959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts.
    Mori M; Sugita T; Mase A; Funatogawa T; Kikuchi M; Aizawa K; Kato S; Saito Y; Ito T; Itabashi H
    Chemosphere; 2013 Jan; 90(4):1359-65. PubMed ID: 22921646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of chloroform formation potential of humic acid by sonolysis and ultraviolet irradiation.
    Naffrechoux E; Combet E; Fanget B; Petrier C
    Water Res; 2003 Apr; 37(8):1948-52. PubMed ID: 12697238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes.
    Huang X; Leal M; Li Q
    Water Res; 2008 Feb; 42(4-5):1142-50. PubMed ID: 17904191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of humic acid using TiO2 photocatalytic process--fractionation and molecular weight characterisation studies.
    Liu S; Lim M; Fabris R; Chow C; Chiang K; Drikas M; Amal R
    Chemosphere; 2008 May; 72(2):263-71. PubMed ID: 18336863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of one-dimensional TiO(2) nanowire photocatalytic oxidation with microfiltration for water treatment.
    Zhang X; Pan JH; Du AJ; Fu W; Sun DD; Leckie JO
    Water Res; 2009 Mar; 43(5):1179-86. PubMed ID: 19157486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and biological oxidation of NOM surrogates and effect on HAA formation.
    Bond T; Goslan EH; Jefferson B; Roddick F; Fan L; Parsons SA
    Water Res; 2009 Jun; 43(10):2615-22. PubMed ID: 19375771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxidative treatment techniques on molecular size distribution of humic acids.
    Kerc A; Bekbolet M; Saatci AM
    Water Sci Technol; 2004; 49(4):7-12. PubMed ID: 15077940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes.
    Latifoglu A; Gurol MD
    Water Res; 2003 Apr; 37(8):1879-89. PubMed ID: 12697231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation.
    Uyguner-Demirel CS; Bekbolet M
    Chemosphere; 2011 Aug; 84(8):1009-31. PubMed ID: 21621242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbability and photocatalytic degradability of humic substances in water on Ti-modified silica.
    Moriguchi T; Tahara M; Yaguchi K
    J Colloid Interface Sci; 2006 May; 297(2):678-86. PubMed ID: 16330037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.