BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 22508446)

  • 1. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
    Sezgin E; Levental I; Grzybek M; Schwarzmann G; Mueller V; Honigmann A; Belov VN; Eggeling C; Coskun U; Simons K; Schwille P
    Biochim Biophys Acta; 2012 Jul; 1818(7):1777-84. PubMed ID: 22450237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into lipid raft structure and formation from experiments in model membranes.
    London E
    Curr Opin Struct Biol; 2002 Aug; 12(4):480-6. PubMed ID: 12163071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering.
    Gajate C; Mollinedo F
    Methods Mol Biol; 2021; 2187():147-186. PubMed ID: 32770506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Correlation Spectroscopy to Examine Protein-Lipid Interactions in Membranes.
    Betaneli V; Mücksch J; Schwille P
    Methods Mol Biol; 2019; 2003():415-447. PubMed ID: 31218628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunofluorescence Labeling of Lipid-Binding Proteins CERTs to Monitor Lipid Raft Dynamics.
    Giovagnoni C; Crivelli SM; Losen M; Martinez-Martinez P
    Methods Mol Biol; 2021; 2187():327-335. PubMed ID: 32770516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies.
    Silvius JR
    Biochim Biophys Acta; 2005 Dec; 1746(3):193-202. PubMed ID: 16271405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.
    Honigmann A; Mueller V; Hell SW; Eggeling C
    Faraday Discuss; 2013; 161():77-89; discussion 113-50. PubMed ID: 23805739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts).
    Ehehalt R; Sparla R; Kulaksiz H; Herrmann T; Füllekrug J; Stremmel W
    BMC Cell Biol; 2008 Aug; 9():45. PubMed ID: 18700980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
    Regmi R; Winkler PM; Flauraud V; Borgman KJE; Manzo C; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    Nano Lett; 2017 Oct; 17(10):6295-6302. PubMed ID: 28926278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles.
    Kahya N; Brown DA; Schwille P
    Biochemistry; 2005 May; 44(20):7479-89. PubMed ID: 15895991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy.
    Kahya N; Scherfeld D; Bacia K; Schwille P
    J Struct Biol; 2004 Jul; 147(1):77-89. PubMed ID: 15109608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent probes for lipid rafts: from model membranes to living cells.
    Klymchenko AS; Kreder R
    Chem Biol; 2014 Jan; 21(1):97-113. PubMed ID: 24361047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.
    Sankaran J; Manna M; Guo L; Kraut R; Wohland T
    Biophys J; 2009 Nov; 97(9):2630-9. PubMed ID: 19883607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence recovery after photobleaching studies of lipid rafts.
    Kenworthy AK
    Methods Mol Biol; 2007; 398():179-92. PubMed ID: 18214381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid rafts: elusive or illusive?
    Munro S
    Cell; 2003 Nov; 115(4):377-88. PubMed ID: 14622593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.