These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22508465)

  • 1. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development.
    Lange M; Norton W; Coolen M; Chaminade M; Merker S; Proft F; Schmitt A; Vernier P; Lesch KP; Bally-Cuif L
    Mol Psychiatry; 2012 Sep; 17(9):946-54. PubMed ID: 22508465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish.
    Lange M; Norton W; Coolen M; Chaminade M; Merker S; Proft F; Schmitt A; Vernier P; Lesch KP; Bally-Cuif L
    Mol Psychiatry; 2012 Sep; 17(9):855. PubMed ID: 22918194
    [No Abstract]   [Full Text] [Related]  

  • 3. Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity.
    Lange M; Froc C; Grunwald H; Norton WHJ; Bally-Cuif L
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt A):181-189. PubMed ID: 29496512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD.
    Labbe A; Liu A; Atherton J; Gizenko N; Fortier MÈ; Sengupta SM; Ridha J
    Am J Med Genet B Neuropsychiatr Genet; 2012 Oct; 159B(7):776-85. PubMed ID: 22851411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study.
    Bruxel EM; Salatino-Oliveira A; Akutagava-Martins GC; Tovo-Rodrigues L; Genro JP; Zeni CP; Polanczyk GV; Chazan R; Schmitz M; Arcos-Burgos M; Rohde LA; Hutz MH
    Genes Brain Behav; 2015 Jun; 14(5):419-27. PubMed ID: 25989180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae.
    Reuter I; Knaup S; Romanos M; Lesch KP; Drepper C; Lillesaar C
    J Neural Transm (Vienna); 2016 Aug; 123(8):841-8. PubMed ID: 27116683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation.
    Mortimer N; Ganster T; O'Leary A; Popp S; Freudenberg F; Reif A; Soler Artigas M; Ribasés M; Ramos-Quiroga JA; Lesch KP; Rivero O
    Neuropharmacology; 2019 Sep; 156():107557. PubMed ID: 30849401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of methylphenidate and atomoxetine on attentional processes in children with ADHD: an event-related potential study using the Attention Network Test.
    Kratz O; Studer P; Baack J; Malcherek S; Erbe K; Moll GH; Heinrich H
    Prog Neuropsychopharmacol Biol Psychiatry; 2012 Apr; 37(1):81-9. PubMed ID: 22227291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further replication of the synergistic interaction between LPHN3 and the NTAD gene cluster on ADHD and its clinical course throughout adulthood.
    Kappel DB; Schuch JB; Rovaris DL; da Silva BS; Cupertino RB; Winkler C; Teche SP; Vitola ES; Karam RG; Rohde LA; Bau CHD; Grevet EH; Mota NR
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Oct; 79(Pt B):120-127. PubMed ID: 28624582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, under-response to amphetamine, and disrupted dopamine markers.
    Regan SL; Hufgard JR; Pitzer EM; Sugimoto C; Hu YC; Williams MT; Vorhees CV
    Neurobiol Dis; 2019 Oct; 130():104494. PubMed ID: 31176715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice.
    Koda K; Ago Y; Cong Y; Kita Y; Takuma K; Matsuda T
    J Neurochem; 2010 Jul; 114(1):259-70. PubMed ID: 20403082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats.
    Kim H; Heo HI; Kim DH; Ko IG; Lee SS; Kim SE; Kim BK; Kim TW; Ji ES; Kim JD; Shin MS; Choi YW; Kim CJ
    Neurosci Lett; 2011 Oct; 504(1):35-9. PubMed ID: 21907264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication.
    Arcos-Burgos M; Jain M; Acosta MT; Shively S; Stanescu H; Wallis D; Domené S; Vélez JI; Karkera JD; Balog J; Berg K; Kleta R; Gahl WA; Roessler E; Long R; Lie J; Pineda D; Londoño AC; Palacio JD; Arbelaez A; Lopera F; Elia J; Hakonarson H; Johansson S; Knappskog PM; Haavik J; Ribases M; Cormand B; Bayes M; Casas M; Ramos-Quiroga JA; Hervas A; Maher BS; Faraone SV; Seitz C; Freitag CM; Palmason H; Meyer J; Romanos M; Walitza S; Hemminger U; Warnke A; Romanos J; Renner T; Jacob C; Lesch KP; Swanson J; Vortmeyer A; Bailey-Wilson JE; Castellanos FX; Muenke M
    Mol Psychiatry; 2010 Nov; 15(11):1053-66. PubMed ID: 20157310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder.
    Avale ME; Falzone TL; Gelman DM; Low MJ; Grandy DK; Rubinstein M
    Mol Psychiatry; 2004 Jul; 9(7):718-26. PubMed ID: 14699433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction.
    Wallis D; Hill DS; Mendez IA; Abbott LC; Finnell RH; Wellman PJ; Setlow B
    Brain Res; 2012 Jun; 1463():85-92. PubMed ID: 22575564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDH13 and LPHN3 Gene Polymorphisms in Attention-Deficit/Hyperactivity Disorder: Their Relation to Clinical Characteristics.
    Özaslan A; Güney E; Ergün MA; Okur İ; Yapar D
    J Mol Neurosci; 2021 Feb; 71(2):394-408. PubMed ID: 32691279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study.
    Ribasés M; Ramos-Quiroga JA; Sánchez-Mora C; Bosch R; Richarte V; Palomar G; Gastaminza X; Bielsa A; Arcos-Burgos M; Muenke M; Castellanos FX; Cormand B; Bayés M; Casas M
    Genes Brain Behav; 2011 Mar; 10(2):149-57. PubMed ID: 21040458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats.
    Ruocco LA; Carnevale UA; Treno C; Sadile AG; Melisi D; Arra C; Ibba M; Schirru C; Carboni E
    Behav Brain Res; 2010 Jun; 210(1):99-106. PubMed ID: 20156489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a latrophilin 3 (LPHN3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (ADHD).
    Fallgatter AJ; Ehlis AC; Dresler T; Reif A; Jacob CP; Arcos-Burgos M; Muenke M; Lesch KP
    Eur Neuropsychopharmacol; 2013 Jun; 23(6):458-68. PubMed ID: 23245769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensional analysis of ADHD subtypes in rats.
    Blondeau C; Dellu-Hagedorn F
    Biol Psychiatry; 2007 Jun; 61(12):1340-50. PubMed ID: 17054922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.