These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22508522)

  • 1. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer.
    Hisatomi T; Dotan H; Stefik M; Sivula K; Rothschild A; Grätzel M; Mathews N
    Adv Mater; 2012 May; 24(20):2699-702. PubMed ID: 22508522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.
    Hisatomi T; Brillet J; Cornuz M; Le Formal F; Tétreault N; Sivula K; Grätzel M
    Faraday Discuss; 2012; 155():223-32; discussion 297-308. PubMed ID: 22470976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity.
    Lee CY; Wang L; Kado Y; Killian MS; Schmuki P
    ChemSusChem; 2014 Mar; 7(3):934-40. PubMed ID: 24677770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.
    Barroso M; Mesa CA; Pendlebury SR; Cowan AJ; Hisatomi T; Sivula K; Grätzel M; Klug DR; Durrant JR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15640-5. PubMed ID: 22802673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.
    Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the electron collection efficiency in porous hematite using a thin iron oxide underlayer: towards efficient all-iron based photoelectrodes.
    Dalle Carbonare N; Carli S; Argazzi R; Orlandi M; Bazzanella N; Miotello A; Caramori S; Bignozzi CA
    Phys Chem Chem Phys; 2015 Nov; 17(44):29661-70. PubMed ID: 26477966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).
    Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanonet-based hematite heteronanostructures for efficient solar water splitting.
    Lin Y; Zhou S; Sheehan SW; Wang D
    J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Al
    Zhang J; Hultqvist A; Zhang T; Jiang L; Ruan C; Yang L; Cheng Y; Edoff M; Johansson EMJ
    ChemSusChem; 2017 Oct; 10(19):3810-3817. PubMed ID: 28857493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.