These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 22508862)
61. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Promnares K; Kumar M; Shroder DY; Zhang X; Anderson JF; Pal U Mol Microbiol; 2009 Oct; 74(1):112-125. PubMed ID: 19703109 [TBL] [Abstract][Full Text] [Related]
62. The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Hyde JA; Shaw DK; Smith Iii R; Trzeciakowski JP; Skare JT Mol Microbiol; 2009 Dec; 74(6):1344-55. PubMed ID: 19906179 [TBL] [Abstract][Full Text] [Related]
64. Live Attenuated Borrelia burgdorferi Targeted Mutants in an Infectious Strain Background Protect Mice from Challenge Infection. Hahn BL; Padmore LJ; Ristow LC; Curtis MW; Coburn J Clin Vaccine Immunol; 2016 Aug; 23(8):725-31. PubMed ID: 27335385 [TBL] [Abstract][Full Text] [Related]
65. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Grimm D; Tilly K; Byram R; Stewart PE; Krum JG; Bueschel DM; Schwan TG; Policastro PF; Elias AF; Rosa PA Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3142-7. PubMed ID: 14970347 [TBL] [Abstract][Full Text] [Related]
66. Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation. Tunev SS; Hastey CJ; Hodzic E; Feng S; Barthold SW; Baumgarth N PLoS Pathog; 2011 May; 7(5):e1002066. PubMed ID: 21637808 [TBL] [Abstract][Full Text] [Related]
67. Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity. Chan K; Awan M; Barthold SW; Parveen N BMC Microbiol; 2012 Jul; 12():157. PubMed ID: 22846633 [TBL] [Abstract][Full Text] [Related]
68. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Li C; Xu H; Zhang K; Liang FT Mol Microbiol; 2010 Mar; 75(6):1563-76. PubMed ID: 20180908 [TBL] [Abstract][Full Text] [Related]
69. The Lon-2 protease of Borrelia burgdorferi is critical for infection in the mammalian host. Mason C; Thompson C; Ouyang Z Mol Microbiol; 2020 May; 113(5):938-950. PubMed ID: 31955462 [TBL] [Abstract][Full Text] [Related]
70. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Sultan SZ; Sekar P; Zhao X; Manne A; Liu J; Wooten RM; Motaleb MA Infect Immun; 2015 May; 83(5):1765-77. PubMed ID: 25690096 [TBL] [Abstract][Full Text] [Related]
71. Borrelia burgdorferi chemotaxis toward tick protein Salp12 contributes to acquisition. Murfin KE; Kleinbard R; Aydin M; Salazar SA; Fikrig E Ticks Tick Borne Dis; 2019 Aug; 10(5):1124-1134. PubMed ID: 31204044 [TBL] [Abstract][Full Text] [Related]
72. The dbpBA locus of Borrelia burgdorferi is not essential for infection of mice. Shi Y; Xu Q; Seemanapalli SV; McShan K; Liang FT Infect Immun; 2006 Nov; 74(11):6509-12. PubMed ID: 16954404 [TBL] [Abstract][Full Text] [Related]
73. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. Coleman AS; Yang X; Kumar M; Zhang X; Promnares K; Shroder D; Kenedy MR; Anderson JF; Akins DR; Pal U PLoS One; 2008 Aug; 3(8):3010e. PubMed ID: 18714378 [TBL] [Abstract][Full Text] [Related]
75. Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Casselli T; Tourand Y; Bankhead T Infect Immun; 2012 May; 80(5):1773-82. PubMed ID: 22354033 [TBL] [Abstract][Full Text] [Related]
76. Passage through Ixodes scapularis ticks enhances the virulence of a weakly pathogenic isolate of Borrelia burgdorferi. Adusumilli S; Booth CJ; Anguita J; Fikrig E Infect Immun; 2010 Jan; 78(1):138-44. PubMed ID: 19822652 [TBL] [Abstract][Full Text] [Related]
77. MCP5, a methyl-accepting chemotaxis protein regulated by both the Hk1-Rrp1 and Rrp2-RpoN-RpoS pathways, is required for the immune evasion of Raghunandanan S; Zhang K; Zhang Y; Sze CW; Priya R; Luo Y; Lynch MJ; Crane BR; Li C; Yang XF bioRxiv; 2024 Jun; ():. PubMed ID: 38915556 [No Abstract] [Full Text] [Related]
78. LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen. Chen T; Xiang X; Xu H; Zhang X; Zhou B; Yang Y; Lou Y; Yang XF Emerg Microbes Infect; 2018 Jul; 7(1):126. PubMed ID: 29985409 [TBL] [Abstract][Full Text] [Related]
79. Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Xu H; He M; Pang X; Xu ZC; Piesman J; Yang XF Infect Immun; 2010 Jan; 78(1):100-7. PubMed ID: 19822648 [TBL] [Abstract][Full Text] [Related]
80. Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Dulebohn DP; Bestor A; Rego RO; Stewart PE; Rosa PA Infect Immun; 2011 Sep; 79(9):3510-7. PubMed ID: 21708994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]