BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22508909)

  • 1. An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction.
    Kamath U; Compton J; Islamaj-Doğan R; De Jong KA; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1387-98. PubMed ID: 22508909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast splice site detection using information content and feature reduction.
    Baten AK; Halgamuge SK; Chang BC
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S8. PubMed ID: 19091031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpliceIT: a hybrid method for splice signal identification based on probabilistic and biological inference.
    Malousi A; Chouvarda I; Koutkias V; Kouidou S; Maglaveras N
    J Biomed Inform; 2010 Apr; 43(2):208-17. PubMed ID: 19800027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved heuristic algorithm for finding motif signals in DNA sequences.
    Huang CW; Lee WS; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):959-75. PubMed ID: 20855921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences.
    Hu J; Yang YD; Kihara D
    BMC Bioinformatics; 2006 Jul; 7():342. PubMed ID: 16839417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature subset selection for splice site prediction.
    Degroeve S; De Baets B; Van de Peer Y; Rouzé P
    Bioinformatics; 2002; 18 Suppl 2():S75-83. PubMed ID: 12385987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SplicePort--an interactive splice-site analysis tool.
    Dogan RI; Getoor L; Wilbur WJ; Mount SM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W285-91. PubMed ID: 17576680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for accurate identification of splice junctions based on hybrid algorithms.
    Mandal I
    J Biomol Struct Dyn; 2015; 33(6):1281-90. PubMed ID: 25203504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective automated feature construction and selection for classification of biological sequences.
    Kamath U; De Jong K; Shehu A
    PLoS One; 2014; 9(7):e99982. PubMed ID: 25033270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.
    Zaman R; Chowdhury SY; Rashid MA; Sharma A; Dehzangi A; Shatabda S
    Biomed Res Int; 2017; 2017():4590609. PubMed ID: 29270430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel feature selection approach for biomedical data classification.
    Peng Y; Wu Z; Jiang J
    J Biomed Inform; 2010 Feb; 43(1):15-23. PubMed ID: 19647098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm.
    Xie X; Wu S; Lam KM; Yan H
    Bioinformatics; 2006 Nov; 22(22):2722-8. PubMed ID: 17000749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding significant matches of position weight matrices in linear time.
    Pizzi C; Rastas P; Ukkonen E
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):69-79. PubMed ID: 21071798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.
    McQuisten KA; Peek AS
    PLoS One; 2009 Oct; 4(10):e7522. PubMed ID: 19847297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple, Fast, Filter-Based Algorithm for Approximate Circular Pattern Matching.
    Azim MA; Iliopoulos CS; Rahman MS; Samiruzzaman M
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):93-100. PubMed ID: 26992174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FunSiP: a modular and extensible classifier for the prediction of functional sites in DNA.
    Van Bel M; Saeys Y; Van de Peer Y
    Bioinformatics; 2008 Jul; 24(13):1532-3. PubMed ID: 18474505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using feature generation and feature selection for accurate prediction of translation initiation sites.
    Zeng F; Yap RH; Wong L
    Genome Inform; 2002; 13():192-200. PubMed ID: 14571388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "iSS-Hyb-mRMR": Identification of splicing sites using hybrid space of pseudo trinucleotide and pseudo tetranucleotide composition.
    Iqbal M; Hayat M
    Comput Methods Programs Biomed; 2016 May; 128():1-11. PubMed ID: 27040827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.