BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 22509005)

  • 1. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness.
    Trichet L; Le Digabel J; Hawkins RJ; Vedula SR; Gupta M; Ribrault C; Hersen P; Voituriez R; Ladoux B
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6933-8. PubMed ID: 22509005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.
    Fusco S; Panzetta V; Embrione V; Netti PA
    Acta Biomater; 2015 Sep; 23():63-71. PubMed ID: 26004223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.
    Zielinski R; Mihai C; Kniss D; Ghadiali SN
    J Biomech Eng; 2013 Jul; 135(7):71009. PubMed ID: 23720059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast adaptation and stiffness matching to soft elastic substrates.
    Solon J; Levental I; Sengupta K; Georges PC; Janmey PA
    Biophys J; 2007 Dec; 93(12):4453-61. PubMed ID: 18045965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling.
    Gupta M; Doss B; Lim CT; Voituriez R; Ladoux B
    Cell Adh Migr; 2016 Sep; 10(5):554-567. PubMed ID: 27050660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis.
    Marzban B; Yi X; Yuan H
    Biomech Model Mechanobiol; 2018 Jun; 17(3):915-922. PubMed ID: 29354863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment.
    Paul R; Heil P; Spatz JP; Schwarz US
    Biophys J; 2008 Feb; 94(4):1470-82. PubMed ID: 17933882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale mechanics guides cellular decision making.
    Rahil Z; Pedron S; Wang X; Ha T; Harley B; Leckband D
    Integr Biol (Camb); 2016 Sep; 8(9):929-35. PubMed ID: 27477049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time single-cell response to stiffness.
    Mitrossilis D; Fouchard J; Pereira D; Postic F; Richert A; Saint-Jean M; Asnacios A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16518-23. PubMed ID: 20823257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional traction forces of Schwann cells on compliant substrates.
    López-Fagundo C; Bar-Kochba E; Livi LL; Hoffman-Kim D; Franck C
    J R Soc Interface; 2014 Aug; 11(97):20140247. PubMed ID: 24872498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress.
    Doss BL; Pan M; Gupta M; Grenci G; Mège RM; Lim CT; Sheetz MP; Voituriez R; Ladoux B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12817-12825. PubMed ID: 32444491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical concepts and models of cellular mechanosensing.
    De R; Zemel A; Safran SA
    Methods Cell Biol; 2010; 98():143-75. PubMed ID: 20816234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
    Kim MC; Silberberg YR; Abeyaratne R; Kamm RD; Asada HH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E390-E399. PubMed ID: 29295934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical model of cells probing the myosin-II-independent mechanosensing mechanism.
    Fang Y; Hu Y; Cheng F; Xin Y
    Phys Rev E; 2021 Dec; 104(6-1):064403. PubMed ID: 35030921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area.
    Wong S; Guo WH; Wang YL
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17176-81. PubMed ID: 25404288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-driven aggregation of specific bonds on compliant substrates.
    Sarvestani AS
    J Biomech; 2013 Jul; 46(11):1961-6. PubMed ID: 23764177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traction forces exerted by epithelial cell sheets.
    Saez A; Anon E; Ghibaudo M; du Roure O; Di Meglio JM; Hersen P; Silberzan P; Buguin A; Ladoux B
    J Phys Condens Matter; 2010 May; 22(19):194119. PubMed ID: 21386442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.
    Walcott S; Sun SX
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7757-62. PubMed ID: 20385838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focal adhesions as mechanosensors: the two-spring model.
    Schwarz US; Erdmann T; Bischofs IB
    Biosystems; 2006; 83(2-3):225-32. PubMed ID: 16236431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.