BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22509349)

  • 1. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior.
    Pezzoli D; Olimpieri F; Malloggi C; Bertini S; Volonterio A; Candiani G
    PLoS One; 2012; 7(4):e34711. PubMed ID: 22509349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting chitosan with polyethylenimine in an ionic liquid for efficient gene delivery.
    Chen H; Cui S; Zhao Y; Zhang C; Zhang S; Peng X
    PLoS One; 2015; 10(4):e0121817. PubMed ID: 25875475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and evaluation of tetramethylguanidinium-polyethylenimine polymers as efficient gene delivery vectors.
    Mahato M; Yadav S; Kumar P; Sharma AK
    Biomed Res Int; 2014; 2014():459736. PubMed ID: 24864245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a polymeric gene delivery vector based on poly(ethylenimine) and hyaluronic acid.
    Needham CJ; Williams AK; Chew SA; Kasper FK; Mikos AG
    Biomacromolecules; 2012 May; 13(5):1429-37. PubMed ID: 22455481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Molecular-Weight Polyethyleneimine Grafted Polythiophene for Efficient siRNA Delivery.
    He P; Hagiwara K; Chong H; Yu HH; Ito Y
    Biomed Res Int; 2015; 2015():406389. PubMed ID: 26539490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of Branched Poly(ethylene imine) with d-Fructose for Selective Delivery of siRNA into Human Breast Cancer Cells.
    Peschel JM; Reichel LS; Hoffmann T; Enzensperger C; Schubert US; Traeger A; Gottschaldt M
    Macromol Biosci; 2023 Dec; 23(12):e2300135. PubMed ID: 37565461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles.
    Khodadust R; Unal O; Yagci Acar H
    Beilstein J Nanotechnol; 2022; 13():82-95. PubMed ID: 35116215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization.
    Cavalli R; Bisazza A; Trotta M; Argenziano M; Civra A; Donalisio M; Lembo D
    Int J Nanomedicine; 2012; 7():3309-18. PubMed ID: 22802689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial evaluation of cations, pH-sensitive and hydrophobic moieties for polymeric vector design.
    Wong SY; Sood N; Putnam D
    Mol Ther; 2009 Mar; 17(3):480-90. PubMed ID: 19142180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate polymers for nonviral nucleic acid delivery.
    Sizovs A; McLendon PM; Srinivasachari S; Reineke TM
    Top Curr Chem; 2010; 296():131-90. PubMed ID: 21504102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of the solubility and conformation change of chitosan grafted polyacrylamide: Impact of grafting rate.
    Zhao W; Zou W; Liu F; Zhou F; Altun NE
    J Mol Graph Model; 2024 Jan; 126():108660. PubMed ID: 37956531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of chitosan in gene therapy: Developments and challenges.
    Dong L; Li Y; Cong H; Yu B; Shen Y
    Carbohydr Polym; 2024 Jan; 324():121562. PubMed ID: 37985064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing
    Heydarian N; Ferrell M; Nair AS; Roedl C; Peng Z; Nguyen TD; Best W; Wozniak KL; Rice CV
    ACS Omega; 2024 Mar; 9(9):10967-10978. PubMed ID: 38463252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy.
    Lin PY; Chiu YL; Huang JH; Chuang EY; Mi FL; Lin KJ; Juang JH; Sung HW; Leong KW
    Adv Sci (Weinh); 2018 Aug; 5(8):1701079. PubMed ID: 30128227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Develop targeted protein drug carriers through a high-throughput screening platform and rational design.
    Li X; Zuo Y; Lin X; Guo B; Jiang H; Guan N; Zheng H; Huang Y; Gu X; Yu B; Wang X
    Adv Healthc Mater; 2024 May; ():e2401793. PubMed ID: 38804201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Modifications in Chitosan Polymer Carries Synergistic Transfection in Drug Targeting.
    Singh D; Bedi N; Chawla PA
    Curr Drug Targets; 2023; 24(12):929-930. PubMed ID: 37584356
    [No Abstract]   [Full Text] [Related]  

  • 17. Non-viral delivery of CRISPR-Cas9 complexes for targeted gene editing via a polymer delivery system.
    O'Keeffe Ahern J; Lara-Sáez I; Zhou D; Murillas R; Bonafont J; Mencía Á; García M; Manzanares D; Lynch J; Foley R; Xu Q; Sigen A; Larcher F; Wang W
    Gene Ther; 2022 Apr; 29(3-4):157-170. PubMed ID: 34363036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized Folate-Modified Graphene Oxide/PEI siRNA Nanocomplexes for Targeted Ovarian Cancer Gene Therapy.
    Wang Y; Sun G; Gong Y; Zhang Y; Liang X; Yang L
    Nanoscale Res Lett; 2020 Mar; 15(1):57. PubMed ID: 32140846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar!
    Bono N; Ponti F; Mantovani D; Candiani G
    Pharmaceutics; 2020 Feb; 12(2):. PubMed ID: 32098191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation.
    Zhang W; Kang X; Yuan B; Wang H; Zhang T; Shi M; Zheng Z; Zhang Y; Peng C; Fan X; Yang H; Shen Y; Huang Y
    Theranostics; 2019; 9(6):1580-1598. PubMed ID: 31037125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.