BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22509389)

  • 1. Spontaneous eosinophilic nasal inflammation in a genetically-mutant mouse: comparative study with an allergic inflammation model.
    Cho SH; Oh SY; Zhu Z; Lee J; Lane AP
    PLoS One; 2012; 7(4):e35114. PubMed ID: 22509389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways.
    Cho SH; Oh SY; Lane AP; Lee J; Oh MH; Lee S; Zheng T; Zhu Z
    PLoS One; 2014; 9(8):e103685. PubMed ID: 25090641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Aspergillus protease with ovalbumin-induced allergic chronic rhinosinusitis model in the mouse.
    Kim JH; Yi JS; Gong CH; Jang YJ
    Am J Rhinol Allergy; 2014; 28(6):465-70. PubMed ID: 25514482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a mouse model of eosinophilic chronic rhinosinusitis with nasal polyp by nasal instillation of an Aspergillus protease and ovalbumin.
    Kim HC; Lim JY; Kim S; Kim JH; Jang YJ
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3899-3906. PubMed ID: 28828551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-17A potentiates interleukin-13-induced eotaxin-3 production by human nasal epithelial cells from patients with allergic rhinitis.
    Wang WW; Zhu K; Yu HW; Pan YL
    Int Forum Allergy Rhinol; 2019 Nov; 9(11):1327-1333. PubMed ID: 31403761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gleditsia sinensis Lam. aqueous extract attenuates nasal inflammation in allergic rhinitis by inhibiting MUC5AC production through suppression of the STAT3/STAT6 pathway.
    Jung MA; Song HK; Jo K; Lee A; Hwang YH; Ji KY; Jung DH; Cai M; Lee JY; Pyun BJ; Kim T
    Biomed Pharmacother; 2023 May; 161():114482. PubMed ID: 36921533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of STAT6 by intranasal allergens correlated with the development of eosinophilic chronic rhinosinusitis in a mouse model.
    Wei H; Xu L; Sun P; Xing H; Zhu Z; Liu J
    Int J Immunopathol Pharmacol; 2022; 36():3946320221109529. PubMed ID: 35726645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Killer Cell Deficits Aggravate Allergic Rhinosinusitis in a Murine Model.
    Kim JH; Gong CH; Choi GE; Kim SA; Kim HS; Jang YJ
    ORL J Otorhinolaryngol Relat Spec; 2016; 78(4):199-207. PubMed ID: 27383429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells.
    Ramanathan M; Lee WK; Spannhake EW; Lane AP
    Am J Rhinol; 2008; 22(2):115-21. PubMed ID: 18416964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and immunopathological characteristics of an Alternaria-induced chronic rhinosinusitis mouse model.
    Shin SH; Ye MK; Lee DW; Chae MH; Choi SY
    PLoS One; 2020; 15(6):e0234731. PubMed ID: 32544181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo expression of signal transducer and activator of transcription factor 6 (STAT6) in nasal mucosa from atopic allergic rhinitis: effect of topical corticosteroids.
    Ghaffar O; Christodoulopoulos P; Lamkhioued B; Wright E; Ihaku D; Nakamura Y; Frenkiel S; Hamid Q
    Clin Exp Allergy; 2000 Jan; 30(1):86-93. PubMed ID: 10606935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation.
    Ford AQ; Dasgupta P; Mikhailenko I; Smith EM; Noben-Trauth N; Keegan AD
    BMC Immunol; 2012 Jan; 13():6. PubMed ID: 22292924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel high-dose ovalbumin-induced murine model of allergic sinonasal inflammation.
    Mendiola M; Tharakan A; Chen M; Asempa T; Lane AP; Ramanathan M
    Int Forum Allergy Rhinol; 2016 Sep; 6(9):964-72. PubMed ID: 27060366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new mechanism regulating the initiation of allergic airway inflammation.
    Kiss A; Montes M; Susarla S; Jaensson EA; Drouin SM; Wetsel RA; Yao Z; Martin R; Hamzeh N; Adelagun R; Amar S; Kheradmand F; Corry DB
    J Allergy Clin Immunol; 2007 Aug; 120(2):334-42. PubMed ID: 17544098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternate STAT6-independent pathway promotes eosinophil influx into blood during allergic airway inflammation.
    Wang W; Hansbro PM; Foster PS; Yang M
    PLoS One; 2011 Mar; 6(3):e17766. PubMed ID: 21423619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SHP-1 deficient mast cells are hyperresponsive to stimulation and critical in initiating allergic inflammation in the lung.
    Zhang L; Oh SY; Wu X; Oh MH; Wu F; Schroeder JT; Takemoto CM; Zheng T; Zhu Z
    J Immunol; 2010 Feb; 184(3):1180-90. PubMed ID: 20042576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine phosphatase SHP-1 in oxidative stress and development of allergic airway inflammation.
    Cho YS; Oh SY; Zhu Z
    Am J Respir Cell Mol Biol; 2008 Oct; 39(4):412-9. PubMed ID: 18441283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation.
    Kamata T; Yamashita M; Kimura M; Murata K; Inami M; Shimizu C; Sugaya K; Wang CR; Taniguchi M; Nakayama T
    J Clin Invest; 2003 Jan; 111(1):109-19. PubMed ID: 12511594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nasal fluid release of eotaxin-3 and eotaxin-2 in persistent sinonasal eosinophilic inflammation.
    De Corso E; Baroni S; Battista M; Romanello M; Penitente R; Di Nardo W; Passali GC; Sergi B; Fetoni AR; Bussu F; Zuppi C; Paludetti G
    Int Forum Allergy Rhinol; 2014 Aug; 4(8):617-24. PubMed ID: 24989688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma.
    Kim SH; Hong JH; Lee YC
    Eur J Pharmacol; 2013 Feb; 701(1-3):131-43. PubMed ID: 23201068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.