BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22509811)

  • 1. mTORC1 and the regulation of skeletal muscle anabolism and mass.
    Adegoke OA; Abdullahi A; Tavajohi-Fini P
    Appl Physiol Nutr Metab; 2012 Jun; 37(3):395-406. PubMed ID: 22509811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle.
    Ham DJ; Lynch GS; Koopman R
    Curr Opin Clin Nutr Metab Care; 2016 Jan; 19(1):67-73. PubMed ID: 26560525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass.
    Goodman CA
    J Appl Physiol (1985); 2019 Aug; 127(2):581-590. PubMed ID: 30676865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine as a treatment for muscle wasting: a critical review.
    Ham DJ; Caldow MK; Lynch GS; Koopman R
    Clin Nutr; 2014 Dec; 33(6):937-45. PubMed ID: 25444557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance.
    Bond P
    J Int Soc Sports Nutr; 2016; 13():8. PubMed ID: 26937223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise, amino acids, and aging in the control of human muscle protein synthesis.
    Walker DK; Dickinson JM; Timmerman KL; Drummond MJ; Reidy PT; Fry CS; Gundermann DM; Rasmussen BB
    Med Sci Sports Exerc; 2011 Dec; 43(12):2249-58. PubMed ID: 21606874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.
    Churchward-Venne TA; Murphy CH; Longland TM; Phillips SM
    Amino Acids; 2013 Aug; 45(2):231-40. PubMed ID: 23645387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism.
    Gordon BS; Steiner JL; Williamson DL; Lang CH; Kimball SR
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E157-74. PubMed ID: 27189933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.
    Goodman CA
    Rev Physiol Biochem Pharmacol; 2014; 166():43-95. PubMed ID: 24442322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner.
    Ham DJ; Caldow MK; Lynch GS; Koopman R
    Amino Acids; 2014 Dec; 46(12):2643-52. PubMed ID: 25096520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle.
    Ogasawara R; Sato K; Higashida K; Nakazato K; Fujita S
    Am J Physiol Endocrinol Metab; 2013 Sep; 305(6):E760-5. PubMed ID: 23900420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling.
    Drummond MJ; Dreyer HC; Fry CS; Glynn EL; Rasmussen BB
    J Appl Physiol (1985); 2009 Apr; 106(4):1374-84. PubMed ID: 19150856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.
    Reidy PT; Rasmussen BB
    J Nutr; 2016 Feb; 146(2):155-83. PubMed ID: 26764320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men.
    Wall BT; Snijders T; Senden JM; Ottenbros CL; Gijsen AP; Verdijk LB; van Loon LJ
    J Clin Endocrinol Metab; 2013 Dec; 98(12):4872-81. PubMed ID: 24108315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.
    Apró W; Wang L; Pontén M; Blomstrand E; Sahlin K
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(1):E22-32. PubMed ID: 23632629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse.
    Galvan E; Arentson-Lantz E; Lamon S; Paddon-Jones D
    Nutrients; 2016 Jul; 8(7):. PubMed ID: 27376322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is TP53INP2 a critical regulator of muscle mass?
    Sala D; Zorzano A
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):234-9. PubMed ID: 25769060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects).
    Phillips SM
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):403-10. PubMed ID: 19448706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.