These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 22509850)
1. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP Prep Biochem Biotechnol; 2012; 42(3):249-66. PubMed ID: 22509850 [TBL] [Abstract][Full Text] [Related]
2. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
3. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Pantazaki AA; Dimopoulou MI; Simou OM; Pritsa AA Appl Microbiol Biotechnol; 2010 Oct; 88(4):939-51. PubMed ID: 20703873 [TBL] [Abstract][Full Text] [Related]
4. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Haba E; Espuny MJ; Busquets M; Manresa A J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218 [TBL] [Abstract][Full Text] [Related]
5. Improvement in Production of Rhamnolipids Using Fried Oil with Hydrophilic Co-substrate by Indigenous Pseudomonas aeruginosa NJ2 and Characterizations. Pathania AS; Jana AK Appl Biochem Biotechnol; 2020 Jul; 191(3):1223-1246. PubMed ID: 32036539 [TBL] [Abstract][Full Text] [Related]
6. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. George S; Jayachandran K Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921 [TBL] [Abstract][Full Text] [Related]
7. Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. Raza ZA; Khalid ZM; Banat IM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1367-73. PubMed ID: 20183494 [TBL] [Abstract][Full Text] [Related]
8. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Costa SG; Lépine F; Milot S; Déziel E; Nitschke M; Contiero J J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1063-72. PubMed ID: 19471980 [TBL] [Abstract][Full Text] [Related]
9. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA; Khan MS; Khalid ZM; Rehman A Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358 [TBL] [Abstract][Full Text] [Related]
10. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN; Banat IM; Winterburn J Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Hori K; Marsudi S; Unno H Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535 [TBL] [Abstract][Full Text] [Related]
12. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
13. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Gong Z; Peng Y; Wang Q Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946 [TBL] [Abstract][Full Text] [Related]
14. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666 [TBL] [Abstract][Full Text] [Related]
15. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563 [TBL] [Abstract][Full Text] [Related]
16. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate. Braz LM; Salazar-Bryam AM; Andrade GSS; Tambourgi EB World J Microbiol Biotechnol; 2022 Dec; 39(2):51. PubMed ID: 36544076 [TBL] [Abstract][Full Text] [Related]
17. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. Zhang H; Xiang H; Zhang G; Cao X; Meng Q J Hazard Mater; 2009 Aug; 167(1-3):217-23. PubMed ID: 19185998 [TBL] [Abstract][Full Text] [Related]
18. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation. Hasanizadeh P; Moghimi H; Hamedi J Water Sci Technol; 2017 Oct; 76(7-8):1706-1714. PubMed ID: 28991787 [TBL] [Abstract][Full Text] [Related]
19. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037 [TBL] [Abstract][Full Text] [Related]
20. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]