These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22509995)

  • 1. Gas-phase and transpiration-driven mechanisms for volatilization through wetland macrophytes.
    Reid MC; Jaffé PR
    Environ Sci Technol; 2012 May; 46(10):5344-52. PubMed ID: 22509995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.
    De Biase C; Carminati A; Oswald SE; Thullner M
    J Contam Hydrol; 2013 Nov; 154():53-69. PubMed ID: 24090736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands.
    Seeger EM; Reiche N; Kuschk P; Borsdorf H; Kaestner M
    Environ Sci Technol; 2011 Oct; 45(19):8467-74. PubMed ID: 21848285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.
    Wiessner A; Kappelmeyer U; Kaestner M; Schultze-Nobre L; Kuschk P
    Water Res; 2013 Sep; 47(13):4265-73. PubMed ID: 23764577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of dynamic air chambers for measurement of volatilization fluxes of benzene and MTBE from constructed wetlands planted with common reed.
    Reiche N; Lorenz W; Borsdorf H
    Chemosphere; 2010 Mar; 79(2):162-8. PubMed ID: 20132961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands.
    Maltais-Landry G; Maranger R; Brisson J; Chazarenc F
    Environ Pollut; 2009 Mar; 157(3):748-54. PubMed ID: 19110349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.
    Bachand PA; Bachand S; Fleck J; Anderson F; Windham-Myers L
    Sci Total Environ; 2014 Jun; 484():232-48. PubMed ID: 24296049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of plants on the reduction of hexavalent chromium in wetland sediments.
    Zazo JA; Paull JS; Jaffe PR
    Environ Pollut; 2008 Nov; 156(1):29-35. PubMed ID: 18299165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.
    Tillman FD; Smith JA
    J Contam Hydrol; 2004 Nov; 75(1-2):71-90. PubMed ID: 15385099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland.
    Wiessner A; Kuschk P; Jechorek M; Seidel H; Kästner M
    Environ Pollut; 2008 Sep; 155(1):125-31. PubMed ID: 18061323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring and assessing processes of organic chemicals removal in constructed wetlands.
    Imfeld G; Braeckevelt M; Kuschk P; Richnow HH
    Chemosphere; 2009 Jan; 74(3):349-62. PubMed ID: 18996559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland.
    Zarate FM; Schulwitz SE; Stevens KJ; Venables BJ
    Chemosphere; 2012 Jul; 88(3):323-9. PubMed ID: 22483729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant aided bioremediation in the vadose zone: model development and applications.
    Sung K; Corapcioglu MY; Drew MC
    J Contam Hydrol; 2004 Sep; 73(1-4):65-98. PubMed ID: 15336790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.
    Lin ZQ; Terry N; Gao S; Mohamed S; Ye ZH
    Int J Phytoremediation; 2010 Mar; 12(3):255-67. PubMed ID: 20734620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of selenium using subsurface-flow constructed wetland.
    Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H
    Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
    Ye ZH; Lin ZQ; Whiting SN; de Souza MP; Terry N
    Chemosphere; 2003 Sep; 52(9):1571-9. PubMed ID: 12867190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.