These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 22510056)

  • 1. Lipase is essential for the study of in vitro release kinetics from organogels.
    Dufresne MH; Marouf E; Kränzlin Y; Gauthier MA; Leroux JC
    Mol Pharm; 2012 Jun; 9(6):1803-11. PubMed ID: 22510056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation.
    Hu B; Wang W; Wang Y; Yang Y; Xu L; Li S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():80-90. PubMed ID: 29025677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.
    Li Z; Cao J; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Deliv; 2016 Oct; 23(8):3168-3178. PubMed ID: 26912188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes.
    Lupi FR; Gabriele D; Baldino N; Mijovic P; Parisi OI; Puoci F
    Food Funct; 2013 Oct; 4(10):1512-20. PubMed ID: 24056806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation.
    Wang D; Zhao J; Liu X; Sun F; Zhou Y; Teng L; Li Y
    Eur J Pharm Sci; 2014 Aug; 60():40-8. PubMed ID: 24815944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone implants modified with cyclodextrin: study of drug release in bulk fluid and into agarose gel.
    Hoang Thi TH; Chai F; Leprêtre S; Blanchemain N; Martel B; Siepmann F; Hildebrand HF; Siepmann J; Flament MP
    Int J Pharm; 2010 Nov; 400(1-2):74-85. PubMed ID: 20816734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels.
    Li Z; Cao J; Hu B; Li H; Liu H; Han F; Liu Z; Tong C; Li S
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1732-41. PubMed ID: 27018332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organogels in drug delivery.
    Murdan S
    Expert Opin Drug Deliv; 2005 May; 2(3):489-505. PubMed ID: 16296770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microemulsion-based organogels as matrices for lipase immobilization.
    Zoumpanioti M; Stamatis H; Xenakis A
    Biotechnol Adv; 2010; 28(3):395-406. PubMed ID: 20156546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organogels and their use in drug delivery--a review.
    Vintiloiu A; Leroux JC
    J Control Release; 2008 Feb; 125(3):179-92. PubMed ID: 18082283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A; Álvarez-Mitre FM; González-Chávez MM; Charó-Alonso MA; Toro-Vazquez JF
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an alginate-based drug delivery system for neurological applications.
    Ciofani G; Raffa V; Pizzorusso T; Menciassi A; Dario P
    Med Eng Phys; 2008 Sep; 30(7):848-55. PubMed ID: 18042419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro study on tamsulosin release kinetics from biodegradable PLGA in situ implants.
    Elias-Al-Mamun M; Khan HA; Dewan I; Jalil RU
    Pak J Pharm Sci; 2009 Oct; 22(4):360-7. PubMed ID: 19783512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs.
    Plourde F; Motulsky A; Couffin-Hoarau AC; Hoarau D; Ong H; Leroux JC
    J Control Release; 2005 Nov; 108(2-3):433-41. PubMed ID: 16182402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the lipase induced degradation of lipid based drug delivery systems.
    Schwab M; Sax G; Schulze S; Winter G
    J Control Release; 2009 Nov; 140(1):27-33. PubMed ID: 19619592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion-gelation method.
    Malakar J; Nayak AK; Pal D
    Int J Biol Macromol; 2012 Jan; 50(1):138-47. PubMed ID: 22020191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the monostearate/monopalmitate ratio on the oral release of active agents from monoacylglycerol organogels.
    Lupi FR; Mancina V; Baldino N; Parisi OI; Scrivano L; Gabriele D
    Food Funct; 2018 Jun; 9(6):3278-3290. PubMed ID: 29789827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K; Sumizawa T; Miyazaki M; Kakemi M
    Int J Pharm; 2010 Mar; 388(1-2):123-8. PubMed ID: 20045041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.