These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22510088)

  • 1. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.
    Der BS; Edwards DR; Kuhlman B
    Biochemistry; 2012 May; 51(18):3933-40. PubMed ID: 22510088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis.
    Khare SD; Kipnis Y; Greisen P; Takeuchi R; Ashani Y; Goldsmith M; Song Y; Gallaher JL; Silman I; Leader H; Sussman JL; Stoddard BL; Tawfik DS; Baker D
    Nat Chem Biol; 2012 Feb; 8(3):294-300. PubMed ID: 22306579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a zinc binding site into the de novo designed protein DS119 with a βαβ structure.
    Zhu C; Zhang C; Liang H; Lai L
    Protein Cell; 2011 Dec; 2(12):1006-13. PubMed ID: 22231358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a zinc-finger hydrolase with a synthetic αββ protein.
    Srivastava KR; Durani S
    PLoS One; 2014; 9(5):e96234. PubMed ID: 24816915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.
    D'Ordine RL; Linger RS; Thai CJ; Davisson VJ
    Biochemistry; 2012 Jul; 51(29):5791-803. PubMed ID: 22741521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A designed supramolecular protein assembly with in vivo enzymatic activity.
    Song WJ; Tezcan FA
    Science; 2014 Dec; 346(6216):1525-8. PubMed ID: 25525249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold.
    Basler S; Studer S; Zou Y; Mori T; Ota Y; Camus A; Bunzel HA; Helgeson RC; Houk KN; Jiménez-Osés G; Hilvert D
    Nat Chem; 2021 Mar; 13(3):231-235. PubMed ID: 33526894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-beta-lactamase from Bacteroides fragilis.
    Fast W; Wang Z; Benkovic SJ
    Biochemistry; 2001 Feb; 40(6):1640-50. PubMed ID: 11327823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ins and outs of biological zinc sites.
    Auld DS
    Biometals; 2009 Feb; 22(1):141-8. PubMed ID: 19140015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
    O'Brien PJ; Herschlag D
    Biochemistry; 2002 Mar; 41(9):3207-25. PubMed ID: 11863460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ
    Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of a highly active and enantiospecific metalloenzyme from short peptides.
    Studer S; Hansen DA; Pianowski ZL; Mittl PRE; Debon A; Guffy SL; Der BS; Kuhlman B; Hilvert D
    Science; 2018 Dec; 362(6420):1285-1288. PubMed ID: 30545884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.
    Klein AS; Zeymer C
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33635315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.