These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22510111)

  • 1. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms.
    Dopson M; Johnson DB
    Environ Microbiol; 2012 Oct; 14(10):2620-31. PubMed ID: 22510111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon, iron and sulfur metabolism in acidophilic micro-organisms.
    Barrie Johnson D; Hallberg KB
    Adv Microb Physiol; 2009; 54():201-55. PubMed ID: 18929069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery.
    Johnson DB; Sánchez-Andrea I
    Adv Microb Physiol; 2019; 75():205-231. PubMed ID: 31655738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments.
    Hedrich S; Schippers A
    Curr Issues Mol Biol; 2021; 40():25-48. PubMed ID: 32159522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes.
    Falagán C; Sánchez-España J; Johnson DB
    FEMS Microbiol Ecol; 2014 Jan; 87(1):231-43. PubMed ID: 24102574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
    Johnson DB; Kanao T; Hedrich S
    Front Microbiol; 2012; 3():96. PubMed ID: 22438853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and genetics of sulfur-oxidizing bacteria.
    Friedrich CG
    Adv Microb Physiol; 1998; 39():235-89. PubMed ID: 9328649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur metabolism in archaea reveals novel processes.
    Liu Y; Beer LL; Whitman WB
    Environ Microbiol; 2012 Oct; 14(10):2632-44. PubMed ID: 22626264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geomicrobiology of extremely acidic subsurface environments.
    Johnson DB
    FEMS Microbiol Ecol; 2012 Jul; 81(1):2-12. PubMed ID: 22224750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A case in support of implementing innovative bio-processes in the metal mining industry.
    Sánchez-Andrea I; Stams AJ; Weijma J; Gonzalez Contreras P; Dijkman H; Rozendal RA; Johnson DB
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.
    Rodríguez E; Lopes A; Fdz-Polanco M; Stams AJ; García-Encina PA
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2181-91. PubMed ID: 21861082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.
    Bonnefoy V; Holmes DS
    Environ Microbiol; 2012 Jul; 14(7):1597-611. PubMed ID: 22050575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.
    Kimura S; Bryan CG; Hallberg KB; Johnson DB
    Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Inorganic Sulfur Compound Metabolizing
    Ni G; Simone D; Palma D; Broman E; Wu X; Turner S; Dopson M
    Front Microbiol; 2018; 9():2945. PubMed ID: 30568637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.
    Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A
    Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment.
    González-Toril E; Santofimia E; Blanco Y; López-Pamo E; Gómez MJ; Bobadilla M; Cruz R; Palomino EJ; Aguilera Á
    Microb Ecol; 2015 Nov; 70(4):936-47. PubMed ID: 26045157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications.
    Sharma A; Kawarabayasi Y; Satyanarayana T
    Extremophiles; 2012 Jan; 16(1):1-19. PubMed ID: 22080280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lithotrophic microorganisms of the oxidative cycles of sulfur and iron].
    Karavaĭko GI; Dubinina GA; Kondrat'eva TF
    Mikrobiologiia; 2006; 75(5):593-629. PubMed ID: 17091584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.