These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22510375)

  • 1. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.
    Kent AR; Grill WM
    J Neural Eng; 2012 Jun; 9(3):036004. PubMed ID: 22510375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation.
    Kent AR; Grill WM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6777-80. PubMed ID: 22255894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of evoked potentials during thalamic deep brain stimulation.
    Kent AR; Swan BD; Brocker DT; Turner DA; Gross RE; Grill WM
    Brain Stimul; 2015; 8(1):42-56. PubMed ID: 25457213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural origin of evoked potentials during thalamic deep brain stimulation.
    Kent AR; Grill WM
    J Neurophysiol; 2013 Aug; 110(4):826-43. PubMed ID: 23719207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of deep brain stimulation electrode characteristics for neural recording.
    Kent AR; Grill WM
    J Neural Eng; 2014 Aug; 11(4):046010. PubMed ID: 24921984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.
    Akhoun I; McKay C; El-Deredy W
    J Neurosci Methods; 2015 Jan; 239():85-93. PubMed ID: 25285985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically evoked compound action potential artifact rejection by independent component analysis: technique validation.
    Akhoun I; McKay CM; El-Deredy W
    Hear Res; 2013 Aug; 302():60-73. PubMed ID: 23632279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of electrically-evoked potentials in the parkinsonian subthalamic nucleus region.
    Rosing J; Doyle A; Brinda A; Blumenfeld M; Lecy E; Spencer C; Dao J; Krieg J; Wilmerding K; Sullivan D; Best S; Mohanty B; Wang J; Johnson LA; Vitek JL; Johnson MD
    Sci Rep; 2023 Feb; 13(1):2685. PubMed ID: 36792646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. amplitude growth functions.
    Bahmer A; Baumann U
    J Neurosci Methods; 2012 Mar; 205(1):202-11. PubMed ID: 22209768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements.
    Klop WM; Hartlooper A; Briare JJ; Frijns JH
    Acta Otolaryngol; 2004 Mar; 124(2):137-43. PubMed ID: 15072415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artefact-free recording of local field potentials with simultaneous stimulation for closed-loop Deep-Brain Stimulation.
    Debarros J; Gaignon L; He S; Pogosyan A; Benjaber M; Denison T; Brown P; Tan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3367-3370. PubMed ID: 33018726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing Evoked Compound Action Potentials from the Spinal Cord: Novel Preclinical and Clinical Considerations for the Pain Management Researcher and Clinician.
    Chakravarthy K; Bink H; Dinsmoor D
    J Pain Res; 2020; 13():3269-3279. PubMed ID: 33328760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance 4 nV (√Hz)
    Petkos K; Guiho T; Degenaar P; Jackson A; Brown P; Denison T; Drakakis EM
    J Neural Eng; 2019 Oct; 16(6):066003. PubMed ID: 31151118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation.
    Rossi L; Foffani G; Marceglia S; Bracchi F; Barbieri S; Priori A
    J Neural Eng; 2007 Jun; 4(2):96-106. PubMed ID: 17409484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information.
    Abbasi O; Hirschmann J; Schmitz G; Schnitzler A; Butz M
    J Neurosci Methods; 2016 Aug; 268():131-41. PubMed ID: 27090949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the electrically evoked compound action potential of the vestibular nerve.
    Nie K; Bierer SM; Ling L; Oxford T; Rubinstein JT; Phillips JO
    Otol Neurotol; 2011 Jan; 32(1):88-97. PubMed ID: 21192375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
    Yousif N; Bayford R; Wang S; Liu X
    Neuroscience; 2008 Mar; 152(3):683-91. PubMed ID: 18304747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic evaluation of a clinical system for deep brain stimulation and recording of neural network activity.
    Stypulkowski PH; Stanslaski SR; Denison TJ; Giftakis JE
    Stereotact Funct Neurosurg; 2013; 91(4):220-32. PubMed ID: 23548876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.