BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22510944)

  • 1. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system.
    Kim H; Miller LM; Al-Refai A; Brand M; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3471-4. PubMed ID: 22255087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic model for redundancy resolution of the human arm via the swivel angle: applications for upper limb exoskeleton control.
    Kim H; Roldan JR; Li Z; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6471-4. PubMed ID: 23367411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups.
    Lilly JH; Quesada PM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):349-59. PubMed ID: 15473198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of the dynamics of a human arm and orthosis linkage mechanism.
    Buckley MA; Johnson GR
    Proc Inst Mech Eng H; 1997; 211(5):349-57. PubMed ID: 9427830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Admittance control of an upper limb exoskeleton--reduction of energy exchange.
    Kim H; Miller LM; Li Z; Roldan JR; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6467-70. PubMed ID: 23367410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundancy and joint limits of a seven degree of freedom upper limb exoskeleton.
    Miller LM; Kim H; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8154-7. PubMed ID: 22256234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of elbow-joints misalignment in upper-limb exoskeleton.
    Malosio M; Pedrocchi N; Vicentini F; Tosatti LM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975393. PubMed ID: 22275597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.