These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 22510951)

  • 1. Polynomial fuzzy observer designs: a sum-of-squares approach.
    Tanaka K; Ohtake H; Seo T; Tanaka M; Wang HO
    IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1330-42. PubMed ID: 22510951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
    Tanaka K; Ohtake H; Wang HO
    IEEE Trans Syst Man Cybern B Cybern; 2009 Apr; 39(2):561-7. PubMed ID: 19095549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H(∞) constrained fuzzy control via state observer feedback for discrete-time Takagi-Sugeno fuzzy systems with multiplicative noises.
    Chang WJ; Wu WY; Ku CC
    ISA Trans; 2011 Jan; 50(1):37-43. PubMed ID: 21040913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.
    Lam HK
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):258-67. PubMed ID: 21900076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piecewise controller design for affine fuzzy systems via dilated linear matrix inequality characterizations.
    Wang H; Yang GH
    ISA Trans; 2012 Nov; 51(6):771-7. PubMed ID: 22819237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy controller design for passive continuous-time affine T-S fuzzy models with relaxed stability conditions.
    Chang WJ; Ku CC; Huang PH; Chang W
    ISA Trans; 2009 Jul; 48(3):295-303. PubMed ID: 19389667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.
    Wang JW; Wu HN; Li HX
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):927-38. PubMed ID: 22328181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.
    Narimani M; Lam HK; Dilmaghani R; Wolfe C
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):713-24. PubMed ID: 21095873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L2- L(infinity) control of nonlinear fuzzy Itô stochastic delay systems via dynamic output feedback.
    Wu L; Zheng WX
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1308-15. PubMed ID: 19336323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy control system design via fuzzy Lyapunov functions.
    Li J; Zhou S; Xu S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1657-61. PubMed ID: 19022736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation.
    Gao Z; Shi X; Ding SX
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):875-80. PubMed ID: 18558548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays.
    Xia Z; Li J; Li J
    ISA Trans; 2012 Nov; 51(6):702-12. PubMed ID: 22795723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI.
    Derakhshan SF; Fatehi A; Sharabiany MG
    IEEE Trans Cybern; 2014 Dec; 44(12):2557-67. PubMed ID: 24733035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems.
    Dong J; Wang Y; Yang GH
    IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1447-59. PubMed ID: 20172831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models.
    Dong J; Wang Y; Yang GH
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1245-58. PubMed ID: 19336311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TSK fuzzy function approximators: design and accuracy analysis.
    Sonbol AH; Fadali MS; Jafarzadeh S
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):702-12. PubMed ID: 22155964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability analysis of interval type-2 fuzzy-model-based control systems.
    Lam HK; Seneviratne LD
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):617-28. PubMed ID: 18558528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the stability and control of continuous-time TSK fuzzy systems.
    Jafarzadeh S; Fadali MS
    IEEE Trans Cybern; 2013 Jun; 43(3):1073-87. PubMed ID: 23757442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the stability of interval type-2 TSK fuzzy logic control systems.
    Biglarbegian M; Melek WW; Mendel JM
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):798-818. PubMed ID: 19884090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust H infinity fuzzy control for a class of uncertain discrete fuzzy bilinear systems.
    Li TH; Tsai SH; Lee JZ; Hsiao MY; Chao CH
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):510-27. PubMed ID: 18348932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.