These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2251118)

  • 1. Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae.
    King DS; Beggs JD
    Nucleic Acids Res; 1990 Nov; 18(22):6559-64. PubMed ID: 2251118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA.
    Teigelkamp S; McGarvey M; Plumpton M; Beggs JD
    EMBO J; 1994 Feb; 13(4):888-97. PubMed ID: 8112302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-mRNA splicing within an assembled yeast spliceosome requires an RNA-dependent ATPase and ATP hydrolysis.
    Kim SH; Lin RJ
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):888-92. PubMed ID: 8430102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The final stages of spliceosome maturation require Spp2p that can interact with the DEAH box protein Prp2p and promote step 1 of splicing.
    Roy J; Kim K; Maddock JR; Anthony JG; Woolford JL
    RNA; 1995 Jun; 1(4):375-90. PubMed ID: 7493316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six novel genes necessary for pre-mRNA splicing in Saccharomyces cerevisiae.
    Maddock JR; Roy J; Woolford JL
    Nucleic Acids Res; 1996 Mar; 24(6):1037-44. PubMed ID: 8604335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast PRP19 protein is not tightly associated with small nuclear RNAs, but appears to associate with the spliceosome after binding of U2 to the pre-mRNA and prior to formation of the functional spliceosome.
    Tarn WY; Lee KR; Cheng SC
    Mol Cell Biol; 1993 Mar; 13(3):1883-91. PubMed ID: 7680101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RES complex is required for efficient transformation of the precatalytic B spliceosome into an activated B
    Bao P; Will CL; Urlaub H; Boon KL; Lührmann R
    Genes Dev; 2017 Dec; 31(23-24):2416-2429. PubMed ID: 29330354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing.
    Kim SH; Lin RJ
    Mol Cell Biol; 1996 Dec; 16(12):6810-9. PubMed ID: 8943336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron.
    Cheng SC
    Nucleic Acids Res; 1994 May; 22(9):1548-54. PubMed ID: 8202353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase.
    Kim SH; Smith J; Claude A; Lin RJ
    EMBO J; 1992 Jun; 11(6):2319-26. PubMed ID: 1534753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction.
    Liu HL; Cheng SC
    Mol Cell Biol; 2012 Dec; 32(24):5056-66. PubMed ID: 23071087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing factor Cwc22 is required for the function of Prp2 and for the spliceosome to escape from a futile pathway.
    Yeh TC; Liu HL; Chung CS; Wu NY; Liu YC; Cheng SC
    Mol Cell Biol; 2011 Jan; 31(1):43-53. PubMed ID: 20956557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of small nuclear RNAs in a precatalytic spliceosome.
    Yean SL; Lin RJ
    Gene Expr; 1996; 5(6):301-13. PubMed ID: 8836738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins.
    Edwalds-Gilbert G; Kim DH; Kim SH; Tseng YH; Yu Y; Lin RJ
    RNA; 2000 Aug; 6(8):1106-19. PubMed ID: 10943890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing.
    Teigelkamp S; Whittaker E; Beggs JD
    Nucleic Acids Res; 1995 Feb; 23(3):320-6. PubMed ID: 7885825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly.
    Rutz B; Séraphin B
    RNA; 1999 Jun; 5(6):819-31. PubMed ID: 10376880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast PRP8 protein interacts directly with pre-mRNA.
    Whittaker E; Beggs JD
    Nucleic Acids Res; 1991 Oct; 19(20):5483-9. PubMed ID: 1945827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2.
    Bai R; Wan R; Yan C; Jia Q; Lei J; Shi Y
    Science; 2021 Jan; 371(6525):. PubMed ID: 33243853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dominant negative mutation in the conserved RNA helicase motif 'SAT' causes splicing factor PRP2 to stall in spliceosomes.
    Plumpton M; McGarvey M; Beggs JD
    EMBO J; 1994 Feb; 13(4):879-87. PubMed ID: 8112301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Prp2 liberates the 5' splice site and the branch site adenosine for catalysis of pre-mRNA splicing.
    Bao P; Höbartner C; Hartmuth K; Lührmann R
    RNA; 2017 Dec; 23(12):1770-1779. PubMed ID: 28864812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.