These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 22511338)

  • 1. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing.
    Mehlich J; Miyata Y; Shinohara H; Ravoo BJ
    Small; 2012 Jul; 8(14):2258-63. PubMed ID: 22511338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Contact Interfaces in Fully Printed Carbon Nanotube Thin-Film Transistors.
    Cao C; Andrews JB; Kumar A; Franklin AD
    ACS Nano; 2016 May; 10(5):5221-9. PubMed ID: 27097302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay.
    Svensson J; Tarakanov Y; Lee DS; Kinaret JM; Park YW; Campbell EE
    Nanotechnology; 2008 Aug; 19(32):325201. PubMed ID: 21828807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes.
    Azoubel S; Shemesh S; Magdassi S
    Nanotechnology; 2012 Aug; 23(34):344003. PubMed ID: 22885854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial thermal conductance observed to be higher in semiconducting than metallic carbon nanotubes.
    Kang SD; Lim SC; Lee ES; Cho YW; Kim YH; Lyeo HK; Lee YH
    ACS Nano; 2012 May; 6(5):3853-60. PubMed ID: 22468828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films.
    Bennett RD; Hart AJ; Miller AC; Hammond PT; Irvine DJ; Cohen RE
    Langmuir; 2006 Sep; 22(20):8273-6. PubMed ID: 16981735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.
    Pillai SK; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7047-54. PubMed ID: 23194001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.
    Xu P; Ji X; Qi J; Yang H; Zheng W; Abetz V; Jiang S; Shen J
    J Nanosci Nanotechnol; 2010 Jan; 10(1):508-13. PubMed ID: 20352884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers.
    Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY
    Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface selective one-step fabrication of carbon nanotube thin films with high density.
    Lobez JM; Han SJ; Afzali A; Hannon JB
    ACS Nano; 2014 May; 8(5):4954-60. PubMed ID: 24684374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source-drain voltage operation.
    Lee J; Lee H; Kim T; Jin HJ; Shin J; Shin Y; Park S; Khang Y; Hong S
    Nanotechnology; 2012 Mar; 23(8):085204. PubMed ID: 22293578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes.
    Jang S; Jang H; Lee Y; Suh D; Baik S; Hong BH; Ahn JH
    Nanotechnology; 2010 Oct; 21(42):425201. PubMed ID: 20858937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.