BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22511447)

  • 1. Small molecular nanowire arrays assisted by superhydrophobic pillar-structured surfaces with high adhesion.
    Su B; Wang S; Wu Y; Chen X; Song Y; Jiang L
    Adv Mater; 2012 May; 24(20):2780-5. PubMed ID: 22511447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elaborate positioning of nanowire arrays contributed by highly adhesive superhydrophobic pillar-structured substrates.
    Su B; Wang S; Ma J; Wu Y; Chen X; Song Y; Jiang L
    Adv Mater; 2012 Jan; 24(4):559-64. PubMed ID: 22213514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays.
    Miele E; Accardo A; Falqui A; Marini M; Giugni A; Leoncini M; De Angelis F; Krahne R; Di Fabrizio E
    Small; 2015 Jan; 11(1):134-40. PubMed ID: 25131422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires.
    Kwak G; Lee M; Senthil K; Yong K
    Langmuir; 2010 Jul; 26(14):12273-7. PubMed ID: 20509642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartly aligning nanowires by a stretching strategy and their application as encoded sensors.
    Wu Y; Su B; Jiang L
    ACS Nano; 2012 Oct; 6(10):9005-12. PubMed ID: 22984829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elaborately programmed nanowires fabricated using a tapered push-pull nozzle system.
    Zhang Y; Mao S; Suzuki Y; Tanaka Y; Kawaguchi M; Zhang W; Zeng H; Nakajima H; Yang M; Uchiyama K
    Chem Commun (Camb); 2018 Jan; 54(7):719-722. PubMed ID: 29227480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construct hierarchical superhydrophobic silicon surfaces by chemical etching.
    Zhou Y; He B; Yang Y; Wang F; Liu W; Wang P; Zhang W; Bello I; Lee ST
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2292-7. PubMed ID: 21449383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters.
    Deng K; Lu H; Shi Z; Liu Q; Li L
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7845-51. PubMed ID: 23879602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective adhesion of Bacillus cereus spores on heterogeneously wetted silicon nanowires.
    Galopin E; Piret G; Szunerits S; Lequette Y; Faille C; Boukherroub R
    Langmuir; 2010 Mar; 26(5):3479-84. PubMed ID: 19891454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust superhydrophilic/hydrophobic surface based on self-aggregated Al2O3 nanowires by single-step anodization and self-assembly method.
    Kim Y; Lee S; Cho H; Park B; Kim D; Hwang W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5074-8. PubMed ID: 22999083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection.
    Xu C; Song Z; Xiang Q; Jin J; Feng X
    Nanoscale; 2016 Apr; 8(14):7391-5. PubMed ID: 26983941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces.
    Piret G; Coffinier Y; Roux C; Melnyk O; Boukherroub R
    Langmuir; 2008 Mar; 24(5):1670-2. PubMed ID: 18251564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance.
    Cho SJ; An T; Kim JY; Sung J; Lim G
    Chem Commun (Camb); 2011 Jun; 47(21):6108-10. PubMed ID: 21523314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.
    Li Z; Leung C; Gao F; Gu Z
    Sensors (Basel); 2015 Sep; 15(9):22473-89. PubMed ID: 26404303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic superhydrophobic surfaces: multiscale approach.
    Nosonovsky M; Bhushan B
    Nano Lett; 2007 Sep; 7(9):2633-7. PubMed ID: 17705434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.