BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 22511613)

  • 1. Acrosomal biogenesis in human globozoospermia: immunocytochemical, ultrastructural and proteomic studies.
    Alvarez Sedó C; Rawe VY; Chemes HE
    Hum Reprod; 2012 Jul; 27(7):1912-21. PubMed ID: 22511613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus.
    Pierre V; Martinez G; Coutton C; Delaroche J; Yassine S; Novella C; Pernet-Gallay K; Hennebicq S; Ray PF; Arnoult C
    Development; 2012 Aug; 139(16):2955-65. PubMed ID: 22764053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice.
    Liu C; Song Z; Wang L; Yu H; Liu W; Shang Y; Xu Z; Zhao H; Gao F; Wen J; Zhao L; Gui Y; Jiao J; Gao F; Li W
    Development; 2017 Feb; 144(3):441-451. PubMed ID: 28003215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids.
    Kierszenbaum AL; Tres LL; Rivkin E; Kang-Decker N; van Deursen JM
    Biol Reprod; 2004 May; 70(5):1400-10. PubMed ID: 14724135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis.
    Mountjoy JR; Xu W; McLeod D; Hyndman D; Oko R
    Biol Reprod; 2008 Aug; 79(2):223-32. PubMed ID: 18401013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure to assemble the peri-nuclear structures in GOPC deficient spermatids as found in round-headed spermatozoa.
    Ito C; Suzuki-Toyota F; Maekawa M; Toyama Y; Yao R; Noda T; Toshimori K
    Arch Histol Cytol; 2004 Nov; 67(4):349-60. PubMed ID: 15700542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation.
    Xiao N; Kam C; Shen C; Jin W; Wang J; Lee KM; Jiang L; Xia J
    J Clin Invest; 2009 Apr; 119(4):802-12. PubMed ID: 19258705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex.
    Chen P; Saiyin H; Shi R; Liu B; Han X; Gao Y; Ye X; Zhang X; Sun Y
    Hum Reprod; 2021 Aug; 36(9):2587-2596. PubMed ID: 34172998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of the Na
    Oberheide K; Puchkov D; Jentsch TJ
    J Biol Chem; 2017 Jun; 292(26):10845-10854. PubMed ID: 28476888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility.
    Oko R; Donald A; Xu W; van der Spoel AC
    Cell Tissue Res; 2011 Oct; 346(1):119-34. PubMed ID: 21987219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of classical bipartite/karyopherin nuclear import pathway components in acrosomal trafficking and assembly during bovine and murid spermiogenesis.
    Tran MH; Aul RB; Xu W; van der Hoorn FA; Oko R
    Biol Reprod; 2012 Mar; 86(3):84. PubMed ID: 22156475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cytogenetic and genetic aspects of globozoospermia: a review.
    Perrin A; Coat C; Nguyen MH; Talagas M; Morel F; Amice J; De Braekeleer M
    Andrologia; 2013 Feb; 45(1):1-9. PubMed ID: 22571172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency in the omega-3 fatty acid pathway results in failure of acrosome biogenesis in mice.
    Roqueta-Rivera M; Abbott TL; Sivaguru M; Hess RA; Nakamura MT
    Biol Reprod; 2011 Oct; 85(4):721-32. PubMed ID: 21653892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of acrosome assembly in a male sterile mouse mutant.
    Sotomayor RE; Handel MA
    Biol Reprod; 1986 Feb; 34(1):171-82. PubMed ID: 3955134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of the developing acrosome with multiple small Golgi units, the Golgi satellites, in spermatids of the musk shrew, Suncus murinus.
    Iida H; Kaneko T; Tanaka S; Mori T
    J Reprod Fertil; 2000 May; 119(1):49-58. PubMed ID: 10864813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TMF/ARA160: A key regulator of sperm development.
    Lerer-Goldshtein T; Bel S; Shpungin S; Pery E; Motro B; Goldstein RS; Bar-Sheshet SI; Breitbart H; Nir U
    Dev Biol; 2010 Dec; 348(1):12-21. PubMed ID: 20691678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis.
    Moreno RD; Palomino J; Schatten G
    Dev Biol; 2006 May; 293(1):218-27. PubMed ID: 16540102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope.
    Yassine S; Escoffier J; Abi Nahed R; Pierre V; Karaouzene T; Ray PF; Arnoult C
    PLoS One; 2015; 10(3):e0118698. PubMed ID: 25775128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the teratogenesis of round-headed spermatozoa: investigations with antibodies against acrosin, an intraacrosomally located acrosin-inhibitor, and the outer acrosomal membrane.
    Flörke-Gerloff S; Krause W; Töpfer-Petersen E; Tschesche H; Müller-Esterl W; Engel W
    Andrologia; 1985; 17(2):126-38. PubMed ID: 2408501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atg7 is required for acrosome biogenesis during spermatogenesis in mice.
    Wang H; Wan H; Li X; Liu W; Chen Q; Wang Y; Yang L; Tang H; Zhang X; Duan E; Zhao X; Gao F; Li W
    Cell Res; 2014 Jul; 24(7):852-69. PubMed ID: 24853953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.