These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22511856)

  • 1. Power-law inter-spike interval distributions infer a conditional maximization of entropy in cortical neurons.
    Tsubo Y; Isomura Y; Fukai T
    PLoS Comput Biol; 2012; 8(4):e1002461. PubMed ID: 22511856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural dynamics and information representation in microcircuits of motor cortex.
    Tsubo Y; Isomura Y; Fukai T
    Front Neural Circuits; 2013; 7():85. PubMed ID: 23653596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
    Tiesinga PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031912. PubMed ID: 15089327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets.
    Dorval AD
    J Neurosci Methods; 2008 Aug; 173(1):129-39. PubMed ID: 18620755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations.
    Miura K; Tsubo Y; Okada M; Fukai T
    J Neurosci; 2007 Dec; 27(50):13802-12. PubMed ID: 18077692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warm body temperature facilitates energy efficient cortical action potentials.
    Yu Y; Hill AP; McCormick DA
    PLoS Comput Biol; 2012; 8(4):e1002456. PubMed ID: 22511855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating temporal causal interaction between spike trains with permutation and transfer entropy.
    Li Z; Li X
    PLoS One; 2013; 8(8):e70894. PubMed ID: 23940662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy analysis of neuronal spike train synchrony.
    Kajikawa Y; Hackett TA
    J Neurosci Methods; 2005 Nov; 149(1):90-3. PubMed ID: 16026849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal integration mechanisms have little effect on spike auto-correlations of cortical neurons.
    Sakai Y
    Neural Netw; 2001 Nov; 14(9):1145-52. PubMed ID: 11718415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial ordering in spike trains: what's it "trying to tell us"?
    Klemm WR; Sherry CJ
    Int J Neurosci; 1981; 14(1-2):15-33. PubMed ID: 7263140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.
    Okamoto H; Fukai T
    PLoS Comput Biol; 2009 Jun; 5(6):e1000404. PubMed ID: 19503816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of pair-wise and higher order correlations on the firing rate of a post-synaptic neuron.
    Bohte SM; Spekreijse H; Roelfsema PR
    Neural Comput; 2000 Jan; 12(1):153-79. PubMed ID: 10636937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The computational structure of spike trains.
    Haslinger R; Klinkner KL; Shalizi CR
    Neural Comput; 2010 Jan; 22(1):121-57. PubMed ID: 19764880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity in Neuronal Firing Regimes across Mammalian Species.
    Mochizuki Y; Onaga T; Shimazaki H; Shimokawa T; Tsubo Y; Kimura R; Saiki A; Sakai Y; Isomura Y; Fujisawa S; Shibata K; Hirai D; Furuta T; Kaneko T; Takahashi S; Nakazono T; Ishino S; Sakurai Y; Kitsukawa T; Lee JW; Lee H; Jung MW; Babul C; Maldonado PE; Takahashi K; Arce-McShane FI; Ross CF; Sessle BJ; Hatsopoulos NG; Brochier T; Riehle A; Chorley P; Grün S; Nishijo H; Ichihara-Takeda S; Funahashi S; Shima K; Mushiake H; Yamane Y; Tamura H; Fujita I; Inaba N; Kawano K; Kurkin S; Fukushima K; Kurata K; Taira M; Tsutsui K; Ogawa T; Komatsu H; Koida K; Toyama K; Richmond BJ; Shinomoto S
    J Neurosci; 2016 May; 36(21):5736-47. PubMed ID: 27225764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits to the temporal fidelity of cortical spike rate signals.
    Mazurek ME; Shadlen MN
    Nat Neurosci; 2002 May; 5(5):463-71. PubMed ID: 11976706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.